TensorRT-LLMs/tensorrt_llm/_torch/utils.py
Kaiyu Xie 3aa6b11d13
Update TensorRT-LLM (#2936)
* Update TensorRT-LLM

---------

Co-authored-by: changcui <cuichang147@gmail.com>
2025-03-18 21:25:19 +08:00

119 lines
4.0 KiB
Python

import os
from dataclasses import dataclass
import torch
from tensorrt_llm._utils import TensorWrapper, convert_to_torch_tensor
from .pipeline_interface import PipelineInterface
is_torch_compiling_flag = False
def set_torch_compiling(enable: bool):
global is_torch_compiling_flag
is_torch_compiling_flag = enable
def is_torch_compiling() -> bool:
global is_torch_compiling_flag
return is_torch_compiling_flag
def make_weak_ref(x):
if isinstance(x, torch.Tensor):
return convert_to_torch_tensor(
TensorWrapper(x.data_ptr(), x.dtype, x.shape)) if x.is_cuda else x
elif isinstance(x, tuple):
return tuple(make_weak_ref(i) for i in x)
elif isinstance(x, list):
return [make_weak_ref(i) for i in x]
elif isinstance(x, dict):
return {k: make_weak_ref(v) for k, v in x.items()}
elif isinstance(x, (int, float, bool)):
return x
elif isinstance(x, PipelineInterface):
return tuple(make_weak_ref(tensor) for tensor in x)
else:
raise TypeError(f"Invalid type {type(x)} to make weak ref")
@dataclass
class Fp4QuantizedTensor:
fp4_tensor: torch.Tensor
scaling_factor: torch.Tensor
_disable_fp4_allgather = os.getenv("TLLM_DISABLE_FP4_ALLGATHER", "0") == "1"
def disable_fp4_allgather():
return _disable_fp4_allgather
def swizzle_sf(sf: torch.Tensor,
row: int,
col: int,
scaling_vector_size: int = 16):
factor = scaling_vector_size * 4
num_m_tiles = (row + 128 - 1) // 128
num_k_tiles = (col + factor - 1) // factor
# SF layout [num_m_tiles, num_k_tiles, 32 (m_tile column major), 4 (m_tile column major), 4(k_tile)]
sf_full = torch.zeros(num_m_tiles * 32 * 4,
num_k_tiles * 4,
dtype=sf.dtype,
device=sf.device)
sf_full[:row, :(col //
scaling_vector_size)] = sf[:row, :(col //
scaling_vector_size)]
sf_full_reshaped = sf_full.view(num_m_tiles, 4, 32, num_k_tiles, 4)
sf_full_swizzle = sf_full_reshaped.transpose(1, 3)
sf_swizzle = sf_full_swizzle.reshape(-1)
return sf_swizzle
def unswizzle_sf(sf: torch.Tensor,
row: int,
col: int,
scaling_vector_size: int = 16):
factor = scaling_vector_size * 4
num_m_tiles = (row + 128 - 1) // 128
num_k_tiles = (col + factor - 1) // factor
# SF layout [num_m_tiles, num_k_tiles, 32 (m_tile column major), 4 (m_tile column major), 4(k_tile)]
sf_reshaped = sf.view(num_m_tiles, num_k_tiles, 32, 4, 4)
sf_unswizzle = sf_reshaped.transpose(1, 3)
sf_unswizzle = sf_unswizzle.reshape(num_m_tiles * 32 * 4, num_k_tiles * 4)
sf_unswizzle_sliced = sf_unswizzle[:row, :(col // scaling_vector_size)]
return sf_unswizzle_sliced.contiguous()
def reswizzle_sf(sf: torch.Tensor,
row: int,
col: int,
scaling_vector_size: int = 16):
factor = scaling_vector_size * 4
num_m_tiles = (row + 128 - 1) // 128
num_k_tiles = (col + factor - 1) // factor
partition_size = num_m_tiles * num_k_tiles * 32 * 4 * 4
num_partitions = sf.numel() // partition_size
sf_reshaped = sf.view(num_partitions, num_m_tiles, num_k_tiles, 32, 4, 4)
sf_unswizzle = sf_reshaped.transpose(2, 4)
sf_unswizzle = sf_unswizzle.reshape(num_partitions, num_m_tiles * 32 * 4,
num_k_tiles * 4)
total_rows = num_partitions * row
num_m_tiles_out = (total_rows + 128 - 1) // 128
sf_out = torch.zeros(
num_m_tiles_out,
4,
32,
num_k_tiles,
4,
dtype=sf.dtype,
device=sf.device,
)
sf_out_reshaped = sf_out.view(num_m_tiles_out * 32 * 4, num_k_tiles * 4)
sf_out_reshaped[:total_rows] = sf_unswizzle[:, :row].reshape(total_rows, -1)
sf_out_swizzle = sf_out.transpose(1, 3).reshape(-1)
return sf_out_swizzle