TensorRT-LLMs/tests/bindings/test_bindings_ut.py
2024-12-24 15:58:43 +08:00

530 lines
20 KiB
Python

import json
import os
import pickle
import sys
import tempfile
from pathlib import Path
import numpy as np
import torch
import tensorrt_llm.bindings as _tb
from tensorrt_llm.mapping import Mapping
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.runtime_defaults import assert_runtime_defaults_are_parsed_correctly
def test_quant_mode():
assert _tb.QuantMode.none().value == 0
assert _tb.QuantMode.int4_weights().has_int4_weights
assert _tb.QuantMode.int8_weights().has_int8_weights
assert _tb.QuantMode.activations().has_activations
assert _tb.QuantMode.per_channel_scaling().has_per_channel_scaling
assert _tb.QuantMode.per_token_scaling().has_per_token_scaling
assert _tb.QuantMode.per_group_scaling().has_per_group_scaling
assert _tb.QuantMode.int8_kv_cache().has_int8_kv_cache
assert _tb.QuantMode.fp8_kv_cache().has_fp8_kv_cache
assert _tb.QuantMode.fp8_qdq().has_fp8_qdq
quant_mode = _tb.QuantMode.from_description(True, True, True, True, True,
True, True, True)
assert quant_mode.has_int4_weights
quant_mode -= _tb.QuantMode.int4_weights()
assert not quant_mode.has_int4_weights
quant_mode += _tb.QuantMode.int4_weights()
assert quant_mode.has_int4_weights
assert _tb.QuantMode.none() == _tb.QuantMode.none()
def test_model_config():
vocab_size = 10000
num_attention_layers = 12
num_rnn_layers = 2
num_heads = 16
hidden_size = 768
data_type = _tb.DataType.FLOAT
model_config = _tb.ModelConfig(vocab_size,
num_attention_layers + num_rnn_layers,
num_attention_layers, num_rnn_layers,
num_heads, hidden_size, data_type)
assert model_config.vocab_size == vocab_size
assert model_config.num_attention_layers() == num_attention_layers
assert model_config.num_rnn_layers() == num_rnn_layers
assert model_config.num_heads == num_heads
assert model_config.hidden_size == hidden_size
assert model_config.data_type == data_type
assert model_config.vocab_size_padded(1) is not None
assert model_config.size_per_head == hidden_size // num_heads
num_kv_heads_per_layer = model_config.num_kv_heads_per_layer
for layer_idx in range(num_attention_layers):
assert model_config.num_kv_heads(layer_idx) == num_heads
assert num_kv_heads_per_layer[layer_idx] == num_heads
num_kv_heads = 1
model_config.set_num_kv_heads(num_kv_heads)
num_kv_heads_per_layer = model_config.num_kv_heads_per_layer
for layer_idx in range(num_attention_layers):
assert model_config.num_kv_heads(layer_idx) == num_kv_heads
assert num_kv_heads_per_layer[layer_idx] == num_kv_heads
num_kv_heads_per_layer[-1] = 2
model_config.num_kv_heads_per_layer = num_kv_heads_per_layer
for nheads, ref in zip(model_config.num_kv_heads_per_layer,
num_kv_heads_per_layer):
assert nheads == ref
assert not model_config.use_gpt_attention_plugin
model_config.use_gpt_attention_plugin = True
assert model_config.use_gpt_attention_plugin
assert not model_config.use_packed_input
model_config.use_packed_input = True
assert model_config.use_packed_input
assert model_config.kv_cache_type is not None
for enum_val in [
_tb.KVCacheType.CONTINUOUS, _tb.KVCacheType.PAGED,
_tb.KVCacheType.DISABLED
]:
model_config.kv_cache_type = enum_val
assert model_config.kv_cache_type == enum_val
assert model_config.tokens_per_block == 64
tokens_per_block = 1024
model_config.tokens_per_block = tokens_per_block
assert model_config.tokens_per_block == tokens_per_block
assert model_config.quant_mode == _tb.QuantMode.none()
model_config.quant_mode = _tb.QuantMode.int4_weights()
assert model_config.quant_mode.has_int4_weights
assert model_config.supports_inflight_batching
assert model_config.max_batch_size == 0
max_batch_size = 1000
model_config.max_batch_size = max_batch_size
assert model_config.max_batch_size == max_batch_size
assert model_config.max_input_len == 0
max_input_len = 2048
model_config.max_input_len = max_input_len
assert model_config.max_input_len == max_input_len
assert model_config.max_num_tokens is None
max_num_tokens = 10000
model_config.max_num_tokens = max_num_tokens
assert model_config.max_num_tokens == max_num_tokens
assert not model_config.compute_context_logits
model_config.compute_context_logits = True
assert model_config.compute_context_logits
assert not model_config.compute_generation_logits
model_config.compute_generation_logits = True
assert model_config.compute_generation_logits
assert model_config.model_variant == _tb.GptModelVariant.GPT
model_variant = _tb.GptModelVariant.GLM
model_config.model_variant = model_variant
assert model_config.model_variant == model_variant
def test_world_config():
tensor_parallelism = 2
pipeline_parallelism = 4
context_parallelism = 1
rank = 3
gpus_per_node = 10
world_config = _tb.WorldConfig(tensor_parallelism, pipeline_parallelism,
context_parallelism, rank, gpus_per_node)
assert world_config.tensor_parallelism == tensor_parallelism
assert world_config.pipeline_parallelism == pipeline_parallelism
assert world_config.context_parallelism == context_parallelism
assert world_config.rank == rank
assert world_config.gpus_per_node == gpus_per_node
assert world_config.gpus_per_group == gpus_per_node
assert world_config.size == tensor_parallelism * pipeline_parallelism * context_parallelism
assert world_config.is_pipeline_parallel
assert world_config.is_tensor_parallel
assert world_config.device == rank % gpus_per_node
assert world_config.pipeline_parallel_rank == rank // tensor_parallelism
assert world_config.tensor_parallel_rank == rank % tensor_parallelism
world_config = _tb.WorldConfig.mpi(gpus_per_node)
assert world_config.tensor_parallelism == 1
assert world_config.pipeline_parallelism == 1
assert world_config.context_parallelism == 1
assert world_config.gpus_per_node == gpus_per_node
assert world_config.rank == 0
gpus_per_group = gpus_per_node // 2
device_ids = list(gpus_per_group + x for x in range(gpus_per_group))
assert max(device_ids) < gpus_per_node
world_config = _tb.WorldConfig(rank=rank,
gpus_per_node=gpus_per_node,
device_ids=device_ids)
assert world_config.gpus_per_node == gpus_per_node
assert world_config.gpus_per_group == gpus_per_group
assert world_config.rank == rank
assert world_config.device == rank + gpus_per_group
def test_sampling_config():
beam_width = 12
sampling_config = _tb.SamplingConfig(beam_width)
assert sampling_config.beam_width == 12
def check_empty_then_set(member, value):
assert getattr(sampling_config, member) is None
setattr(sampling_config, member, value)
assert getattr(sampling_config, member) == value
float_array = [1., 2., 3.]
size_t_array = [1, 2, 3]
check_empty_then_set("temperature", float_array)
check_empty_then_set("min_length", size_t_array)
check_empty_then_set("repetition_penalty", float_array)
check_empty_then_set("presence_penalty", float_array)
check_empty_then_set("frequency_penalty", float_array)
check_empty_then_set("top_k", size_t_array)
check_empty_then_set("top_p", float_array)
check_empty_then_set("random_seed", size_t_array)
check_empty_then_set("top_p_decay", float_array)
check_empty_then_set("top_p_min", float_array)
check_empty_then_set("top_p_reset_ids", size_t_array)
check_empty_then_set("beam_search_diversity_rate", float_array)
check_empty_then_set("length_penalty", float_array)
check_empty_then_set("early_stopping", size_t_array)
def test_gpt_json_config():
model_config = {
"vocab_size": 1000,
"num_layers": 18, # >= attn + rnn
"num_attention_layers": 12,
"num_rnn_layers": 2,
"num_heads": 4,
"hidden_size": 512,
"data_type": _tb.DataType.FLOAT,
}
trt_model_config = _tb.ModelConfig(**model_config)
json_config = {
"name": "gpt",
"version": "none",
"precision": "float32",
"tensor_parallelism": 1,
"pipeline_parallelism": 1,
"context_parallelism": 1,
"gpus_per_node": 8,
"model_config": trt_model_config
}
gpt_json_config = _tb.GptJsonConfig(**json_config)
def check_properties(the_object, properties, model_config):
for property, value in properties.items():
if isinstance(value, _tb.ModelConfig):
object_config = getattr(the_object, property)
for subproperty, subvalue in model_config.items():
member = getattr(object_config, subproperty)
if callable(member):
member = member()
assert member == subvalue
else:
assert getattr(the_object, property) == value
check_properties(gpt_json_config, json_config, model_config)
assert gpt_json_config.runtime_defaults is None
json_dict = {
"builder_config": {
"name": json_config["name"],
"vocab_size": model_config["vocab_size"],
"num_layers": model_config["num_attention_layers"],
"num_heads": model_config["num_heads"],
"hidden_size": model_config["hidden_size"],
"precision": json_config["precision"],
"tensor_parallel": json_config["tensor_parallelism"],
"pipeline_parallel": json_config["pipeline_parallelism"],
"context_parallel": json_config["context_parallelism"],
},
"plugin_config": {
"paged_kv_cache": False,
"tokens_per_block": 0,
"gpt_attention_plugin": False,
"remove_input_padding": False,
"context_fmha": False,
"use_paged_context_fmha": False,
"lora_plugin": False,
}
}
gpt_json_config = _tb.GptJsonConfig.parse(json.dumps(json_dict))
with tempfile.NamedTemporaryFile("w", delete=False) as fp:
json.dump(json_dict, fp)
fp.close()
gpt_json_config = _tb.GptJsonConfig.parse_file(Path(fp.name))
Path(fp.name).unlink()
rank = 3
gpus_per_node = 10
world_config = _tb.WorldConfig(json_config["tensor_parallelism"],
json_config["pipeline_parallelism"],
json_config["context_parallelism"], rank,
gpus_per_node)
assert gpt_json_config.engine_filename(
world_config) == json_config["name"] + "_float32_tp1_rank3.engine"
assert gpt_json_config.engine_filename(
world_config, "llama") == "llama_float32_tp1_rank3.engine"
def parse_runtime_defaults(defaults_dict: dict | None = None):
config = _tb.GptJsonConfig.parse(
json.dumps({
"version": "some.version",
"build_config": {
"plugin_config": json_dict["plugin_config"],
"lora_config": {},
},
"pretrained_config": {
**json_dict["builder_config"],
"architecture": "LlamaForCausalLM",
"mapping": Mapping().to_dict(),
"dtype": "bfloat16",
"num_hidden_layers": 1,
"num_attention_heads": 1,
"quantization": {},
"runtime_defaults": defaults_dict,
},
}))
return config.runtime_defaults
strict_keys = False # GptJsonConfig is written in cpp, and there is currently no nice way to throw on extra keys
assert_runtime_defaults_are_parsed_correctly(parse_runtime_defaults,
strict_keys=strict_keys)
def test_llm_request():
beam_width = 2
sampling_config = _tb.SamplingConfig(beam_width)
kwargs = {
"request_id": 0,
"max_new_tokens": 5,
"sampling_config": sampling_config,
"input_tokens": [0, 1, 2],
"position_ids": [0, 1, 2],
"is_streaming": True,
"pad_id": 99,
"end_id": 100,
"prompt_embedding_table": torch.tensor((10, 10)),
"prompt_vocab_size": 2,
"embedding_bias": torch.tensor((10, 10)),
"stop_words_list": torch.tensor((10, 10)),
"bad_words_list": torch.tensor((10, 10)),
"return_log_probs": True,
"return_context_logits": False,
"return_generation_logits": False
}
llm_request = _tb.internal.batch_manager.LlmRequest(**kwargs)
assert llm_request.request_id == 0
assert llm_request.prompt_len == 3
assert llm_request.sampling_config.beam_width == sampling_config.beam_width
assert llm_request.streaming
assert llm_request.pad_id == 99
assert llm_request.end_id == 100
assert llm_request.seq_slot == None
assert torch.equal(llm_request.prompt_embedding_table(),
kwargs["prompt_embedding_table"])
assert llm_request.prompt_vocab_size == 2
assert torch.equal(llm_request.embedding_bias(), kwargs["embedding_bias"])
assert torch.equal(llm_request.stop_words_list(), kwargs["stop_words_list"])
assert torch.equal(llm_request.bad_words_list(), kwargs["bad_words_list"])
assert llm_request.get_num_tokens(0) == 3
assert llm_request.max_beam_num_tokens == 3
assert llm_request.get_token(1, 2) == 2
assert llm_request.get_tokens(1) == [0, 1, 2]
assert llm_request.max_num_generated_tokens == 0
assert llm_request.position_ids == [0, 1, 2]
llm_request.add_new_token(42, 0)
assert llm_request.get_token(0, 3) == 42
llm_request.add_new_tokens([43, 44])
assert llm_request.get_token(0, 4) == 43
assert llm_request.get_token(1, 3) == 44
llm_request.set_generated_tokens([[10, 11], [12, 13]])
assert llm_request.get_tokens(0) == [0, 1, 2, 10, 11]
assert llm_request.max_num_generated_tokens == 2
llm_request.pause(0)
assert llm_request.state == _tb.LlmRequestState.CONTEXT_INIT
llm_request.max_sent_token_len = 1
assert llm_request.max_sent_token_len == 1
assert llm_request.return_log_probs
llm_request.set_log_probs([0.1], 0)
llm_request.set_log_probs([0.2], 1)
assert np.allclose(llm_request.get_log_probs(0), np.array([0.1]))
assert np.allclose(llm_request.log_probs, np.array([[0.1], [0.2]]))
llm_request.set_return_encoder_output(True)
assert llm_request.get_return_encoder_output()
llm_request.set_return_encoder_output(False)
assert not llm_request.get_return_encoder_output()
assert np.allclose(llm_request.priority(), 0.5)
llm_request.set_priority(1.0)
assert np.allclose(llm_request.priority(), 1.0)
llm_request.set_priority(0.0)
assert np.allclose(llm_request.priority(), 0.0)
llm_request.set_cum_log_prob(0.1, 0)
llm_request.set_cum_log_prob(0.2, 1)
assert np.allclose(llm_request.cum_log_probs, np.array([0.1, 0.2]))
assert llm_request.orig_prompt_len == 3
assert not llm_request.draft_tokens
llm_request.draft_tokens = [1, 2, 3]
assert llm_request.draft_tokens == [1, 2, 3]
logits = torch.tensor([-5, -6 - 7], dtype=torch.float)
llm_request.draft_logits = logits
assert torch.equal(llm_request.draft_logits, logits)
def test_trt_gpt_model_optional_params():
opt_params = _tb.TrtGptModelOptionalParams()
kv_cache_config = _tb.KvCacheConfig(10, [10], 0, 0.5, False)
opt_params.kv_cache_config = kv_cache_config
assert opt_params.kv_cache_config.free_gpu_memory_fraction == kv_cache_config.free_gpu_memory_fraction
assert not opt_params.enable_trt_overlap
opt_params.enable_trt_overlap = True
assert opt_params.enable_trt_overlap
assert opt_params.device_ids is None
opt_params.device_ids = [0, 1]
assert opt_params.device_ids == [0, 1]
assert not opt_params.enable_chunked_context
opt_params.enable_chunked_context = True
assert opt_params.enable_chunked_context
assert opt_params.normalize_log_probs
opt_params.normalize_log_probs = False
assert not opt_params.normalize_log_probs
assert not opt_params.decoding_config.decoding_mode
opt_params.decoding_config.decoding_mode = _tb.executor.DecodingMode.TopKTopP(
)
assert opt_params.decoding_config.decoding_mode.isTopKandTopP()
assert not opt_params.max_beam_width
opt_params.max_beam_width = 4
assert opt_params.max_beam_width == 4
assert opt_params.scheduler_config.capacity_scheduler_policy == _tb.executor.CapacitySchedulerPolicy.GUARANTEED_NO_EVICT
assert opt_params.scheduler_config.context_chunking_policy == None
opt_params.scheduler_config = _tb.executor.SchedulerConfig(
_tb.executor.CapacitySchedulerPolicy.GUARANTEED_NO_EVICT,
_tb.executor.ContextChunkingPolicy.FIRST_COME_FIRST_SERVED)
assert opt_params.scheduler_config.capacity_scheduler_policy == _tb.executor.CapacitySchedulerPolicy.GUARANTEED_NO_EVICT
assert opt_params.scheduler_config.context_chunking_policy == _tb.executor.ContextChunkingPolicy.FIRST_COME_FIRST_SERVED
def test_trt_gpt_model_optional_params_ctor():
kv_cache_config = _tb.KvCacheConfig(10, [10], 0, 0.5, False)
enable_trt_overlap = True
device_ids = [0, 1]
normalize_log_probs = False
enable_chunked_context = True
peft_cache_manager_config = _tb.PeftCacheManagerConfig()
opt_params = _tb.TrtGptModelOptionalParams(kv_cache_config,
enable_trt_overlap, device_ids,
normalize_log_probs,
enable_chunked_context,
peft_cache_manager_config)
assert opt_params.kv_cache_config.free_gpu_memory_fraction == kv_cache_config.free_gpu_memory_fraction
assert opt_params.enable_trt_overlap
assert opt_params.device_ids == device_ids
assert opt_params.normalize_log_probs == normalize_log_probs
assert opt_params.enable_chunked_context == enable_chunked_context
assert opt_params.gpu_weights_percent == 1
def test_KvCacheConfig_pickle():
cache = _tb.KvCacheConfig(free_gpu_memory_fraction=0.4)
cache1 = pickle.dumps(cache)
cache2 = pickle.loads(cache1)
assert cache2 == cache
def test_TrtGptModelOptionalParams_pickle():
cache = _tb.KvCacheConfig(free_gpu_memory_fraction=0.4)
params1 = _tb.TrtGptModelOptionalParams(
kv_cache_config=cache,
enable_trt_overlap=True,
)
params1.enable_chunked_context = True
params2 = pickle.loads(pickle.dumps(params1))
assert params2 == params1
params1 = _tb.TrtGptModelOptionalParams()
params2 = pickle.loads(pickle.dumps(params1))
assert params2 == params1
def test_Mpicomm():
size1 = _tb.MpiComm.size()
rank1 = _tb.MpiComm.rank()
session_size = (size1 + 1) // 2
session_color = rank1 // session_size
session_rank = rank1 % session_size
_tb.MpiComm.split(session_color, session_rank)
rank2 = _tb.MpiComm.rank()
size2 = _tb.MpiComm.size()
assert rank2 == session_rank
assert size2 == session_size
def test_SamplingConfig_pickle():
config = _tb.SamplingConfig()
config.beam_width = 2
config.temperature = [1.0, 2.0]
config.top_k = [1, 2]
config.top_p = [0.1, 0.2]
config.random_seed = [1, 2]
config.repetition_penalty = [1.0, 2.0]
config.presence_penalty = [1.0, 2.0]
config.frequency_penalty = [1.0, 2.0]
config.length_penalty = [1.0, 2.0]
config.early_stopping = [1, 2]
config.top_p_decay = [1.0, 2.0]
config.top_p_min = [1.0, 2.0]
config.top_p_reset_ids = [1, 2]
config.beam_search_diversity_rate = [1.0, 2.0]
config1 = pickle.loads(pickle.dumps(config))
assert config1 == config