TensorRT-LLMs/tests/functional/test_argmax.py
2024-07-17 20:45:02 +08:00

68 lines
2.2 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
from itertools import product
# isort: off
import torch
# isort: on
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session
class TestArgmax(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand(
list(product(['float32', 'float16'], [False, True], [0, 1, 2])))
def test_argmax(self, dtype, keep_dim, dim):
# test data
x_shape = (4, 12, 32)
x_data = torch.rand(x_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
x = Tensor(name='x',
shape=x_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.argmax(x, dim, keepdim=keep_dim)
output.mark_output('output')
# trt run
inputs = {'x': x_data}
session = create_session(builder, network, precision=dtype)
outputs = run_session(session, inputs)
# pytorch run
ref = x_data.argmax(dim=dim, keepdim=keep_dim)
# compare diff
# ref is torch.int64, outputs is torch.int32
torch.testing.assert_close(ref.int(), outputs['output'].int())