mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-27 22:23:25 +08:00
148 lines
5.7 KiB
Python
148 lines
5.7 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import unittest
|
|
from itertools import product
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from parameterized import parameterized
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
from tensorrt_llm._utils import str_dtype_to_torch, str_dtype_to_trt
|
|
from tensorrt_llm.functional import gemm_swiglu, low_latency_gemm_swiglu
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
# Monkey Patching for torch.float8_e4m3fn support
|
|
from polygraphy.datatype import DataType
|
|
from utils.util import getSMVersion, unittest_name_func
|
|
|
|
original_to_dtype = DataType.to_dtype
|
|
|
|
|
|
def patched_to_dtype(dtype, target_module):
|
|
if dtype == DataType.FLOAT8E4M3FN and target_module == 'torch':
|
|
return torch.float8_e4m3fn
|
|
else:
|
|
return original_to_dtype(dtype, target_module)
|
|
|
|
|
|
DataType.to_dtype = patched_to_dtype
|
|
|
|
|
|
class TestGemmSwiglu(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
def reference_gemm_swiglu_sm90(self, x: torch.Tensor, w: torch.Tensor,
|
|
scale_d0: float, scale_d1: float,
|
|
scale_output: float, dtype):
|
|
silu = torch.nn.SiLU()
|
|
y = torch.matmul(x.to(torch.float32), w.to(torch.float32))
|
|
split, split_gate = torch.split(y, y.size(1) // 2, dim=1)
|
|
y_swiglu = (
|
|
(scale_d0 * split) * silu(scale_d1 * split_gate)) * scale_output
|
|
return y_swiglu.to(str_dtype_to_torch(dtype))
|
|
|
|
def run_gemm_swiglu_sm90(self, m, n, k, scale_d0, scale_d1, scale_output,
|
|
dtype, is_low_latency):
|
|
assert n % 32 == 0, "dim N must be a integer multiples of 32"
|
|
assert k % 16 == 0, "dim K must be a integer multiples of 16"
|
|
|
|
torch.random.manual_seed(42)
|
|
|
|
shape_x = (m, k)
|
|
x = torch.randint(-2, 2, shape_x,
|
|
device="cuda").to(str_dtype_to_torch(dtype))
|
|
shape_w = (k, n)
|
|
w = torch.randint(-2, 2, shape_w,
|
|
device="cuda").to(str_dtype_to_torch(dtype))
|
|
|
|
output_dtype = "fp8"
|
|
# Create builder
|
|
builder = tensorrt_llm.Builder()
|
|
# Create empty network
|
|
net = builder.create_network()
|
|
# Allow plugin of dtype type
|
|
if is_low_latency:
|
|
net.plugin_config.low_latency_gemm_swiglu_plugin = dtype
|
|
else:
|
|
net.plugin_config.gemm_swiglu_plugin = dtype
|
|
|
|
with tensorrt_llm.net_guard(net):
|
|
# Init TensorRT-LLM tensor for x
|
|
x_tensor = Tensor(name='x',
|
|
shape=x.shape,
|
|
dtype=str_dtype_to_trt(dtype))
|
|
# Init TensorRT-LLM tensor for w
|
|
w_tensor = Tensor(name='w',
|
|
shape=w.shape,
|
|
dtype=str_dtype_to_trt(dtype))
|
|
# Get output tensor
|
|
if not is_low_latency:
|
|
output = gemm_swiglu(x_tensor, w_tensor, None, scale_d0,
|
|
scale_d1, scale_output)
|
|
else:
|
|
output = low_latency_gemm_swiglu(x_tensor, w_tensor, scale_d0,
|
|
scale_d1, scale_output)
|
|
net._mark_output(output,
|
|
'output',
|
|
dtype=str_dtype_to_trt(output_dtype))
|
|
|
|
feed_dict = {'x': x, "w": w.t().reshape(shape_w)}
|
|
output_trt = torch.empty((m, n // 2),
|
|
device="cuda",
|
|
dtype=str_dtype_to_torch(output_dtype))
|
|
outputs = {'output': output_trt}
|
|
stream = torch.cuda.current_stream()
|
|
builder_config = builder.create_builder_config(precision=output_dtype)
|
|
engine = builder.build_engine(net, builder_config)
|
|
session = tensorrt_llm.runtime.Session.from_serialized_engine(engine)
|
|
session.run(inputs=feed_dict,
|
|
outputs=outputs,
|
|
stream=stream.cuda_stream)
|
|
torch.cuda.synchronize()
|
|
|
|
ref = self.reference_gemm_swiglu_sm90(x, w, scale_d0, scale_d1,
|
|
scale_output, dtype)
|
|
np.testing.assert_allclose(ref.float().cpu().numpy(),
|
|
outputs['output'].cpu().float(),
|
|
rtol=1e-3)
|
|
|
|
@parameterized.expand(list(product([('fp8')], [False, True])),
|
|
name_func=unittest_name_func)
|
|
@pytest.mark.skipif(getSMVersion() != 90,
|
|
reason="GemmSwigluSm90 is only supported in SM90"
|
|
) # Skip tests that are not supported in SM90
|
|
def test_gemm_swiglu_sm90(self, dtype, is_low_latency):
|
|
bs = 2
|
|
inseq = 13
|
|
hidden_size = 256
|
|
out_size = 32
|
|
scale_d0 = 0.2
|
|
scale_d1 = 1.3
|
|
scale_output = 0.001
|
|
|
|
self.run_gemm_swiglu_sm90(bs * inseq, out_size, hidden_size, scale_d0,
|
|
scale_d1, scale_output, dtype, is_low_latency)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|