TensorRT-LLMs/tests/functional/test_gemm_swiglu.py
石晓伟 8f91cff22e
TensorRT-LLM Release 0.15.0 (#2529)
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2024-12-04 13:44:56 +08:00

148 lines
5.7 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
from itertools import product
import numpy as np
import pytest
import torch
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Tensor
from tensorrt_llm._utils import str_dtype_to_torch, str_dtype_to_trt
from tensorrt_llm.functional import gemm_swiglu, low_latency_gemm_swiglu
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
# Monkey Patching for torch.float8_e4m3fn support
from polygraphy.datatype import DataType
from utils.util import getSMVersion, unittest_name_func
original_to_dtype = DataType.to_dtype
def patched_to_dtype(dtype, target_module):
if dtype == DataType.FLOAT8E4M3FN and target_module == 'torch':
return torch.float8_e4m3fn
else:
return original_to_dtype(dtype, target_module)
DataType.to_dtype = patched_to_dtype
class TestGemmSwiglu(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def reference_gemm_swiglu_sm90(self, x: torch.Tensor, w: torch.Tensor,
scale_d0: float, scale_d1: float,
scale_output: float, dtype):
silu = torch.nn.SiLU()
y = torch.matmul(x.to(torch.float32), w.to(torch.float32))
split, split_gate = torch.split(y, y.size(1) // 2, dim=1)
y_swiglu = (
(scale_d0 * split) * silu(scale_d1 * split_gate)) * scale_output
return y_swiglu.to(str_dtype_to_torch(dtype))
def run_gemm_swiglu_sm90(self, m, n, k, scale_d0, scale_d1, scale_output,
dtype, is_low_latency):
assert n % 32 == 0, "dim N must be a integer multiples of 32"
assert k % 16 == 0, "dim K must be a integer multiples of 16"
torch.random.manual_seed(42)
shape_x = (m, k)
x = torch.randint(-2, 2, shape_x,
device="cuda").to(str_dtype_to_torch(dtype))
shape_w = (k, n)
w = torch.randint(-2, 2, shape_w,
device="cuda").to(str_dtype_to_torch(dtype))
output_dtype = "fp8"
# Create builder
builder = tensorrt_llm.Builder()
# Create empty network
net = builder.create_network()
# Allow plugin of dtype type
if is_low_latency:
net.plugin_config.low_latency_gemm_swiglu_plugin = dtype
else:
net.plugin_config.gemm_swiglu_plugin = dtype
with tensorrt_llm.net_guard(net):
# Init TensorRT-LLM tensor for x
x_tensor = Tensor(name='x',
shape=x.shape,
dtype=str_dtype_to_trt(dtype))
# Init TensorRT-LLM tensor for w
w_tensor = Tensor(name='w',
shape=w.shape,
dtype=str_dtype_to_trt(dtype))
# Get output tensor
if not is_low_latency:
output = gemm_swiglu(x_tensor, w_tensor, None, scale_d0,
scale_d1, scale_output)
else:
output = low_latency_gemm_swiglu(x_tensor, w_tensor, scale_d0,
scale_d1, scale_output)
net._mark_output(output,
'output',
dtype=str_dtype_to_trt(output_dtype))
feed_dict = {'x': x, "w": w.t().reshape(shape_w)}
output_trt = torch.empty((m, n // 2),
device="cuda",
dtype=str_dtype_to_torch(output_dtype))
outputs = {'output': output_trt}
stream = torch.cuda.current_stream()
builder_config = builder.create_builder_config(precision=output_dtype)
engine = builder.build_engine(net, builder_config)
session = tensorrt_llm.runtime.Session.from_serialized_engine(engine)
session.run(inputs=feed_dict,
outputs=outputs,
stream=stream.cuda_stream)
torch.cuda.synchronize()
ref = self.reference_gemm_swiglu_sm90(x, w, scale_d0, scale_d1,
scale_output, dtype)
np.testing.assert_allclose(ref.float().cpu().numpy(),
outputs['output'].cpu().float(),
rtol=1e-3)
@parameterized.expand(list(product([('fp8')], [False, True])),
name_func=unittest_name_func)
@pytest.mark.skipif(getSMVersion() != 90,
reason="GemmSwigluSm90 is only supported in SM90"
) # Skip tests that are not supported in SM90
def test_gemm_swiglu_sm90(self, dtype, is_low_latency):
bs = 2
inseq = 13
hidden_size = 256
out_size = 32
scale_d0 = 0.2
scale_d1 = 1.3
scale_output = 0.001
self.run_gemm_swiglu_sm90(bs * inseq, out_size, hidden_size, scale_d0,
scale_d1, scale_output, dtype, is_low_latency)
if __name__ == '__main__':
unittest.main()