TensorRT-LLMs/tests/functional/test_interpolate.py
2024-07-17 20:45:02 +08:00

384 lines
13 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import torch
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session
class TestInterpolate(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_interpolate_without_scales_nearest_5d(self):
# test data
dtype = 'float32'
input_shape = (1, 1, 8, 12, 16)
output_shape = (16, 24, 32)
input_data = torch.rand(
input_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
mode = 'nearest'
# construct trt network
align_corners_flag = False
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
size=output_shape,
mode=mode,
align_corners=align_corners_flag,
)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'input': input_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.nn.functional.interpolate(input_data,
size=output_shape,
mode=mode)
# compare diff
torch.testing.assert_close(ref, outputs['output'])
def test_interpolate_without_scales_bilinear_4d_disable_align_corner(self):
# test data
dtype = 'float32'
input_shape = (1, 1, 8, 12)
output_shape = (16, 24)
input_data = torch.rand(
input_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
mode = 'bilinear'
# construct trt network
align_corners_flag = False
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
size=output_shape,
mode=mode,
align_corners=align_corners_flag,
)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'input': input_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.nn.functional.interpolate(input_data,
size=output_shape,
mode=mode)
# compare diff
torch.testing.assert_close(ref, outputs['output'])
def test_interpolate_without_scales_bilinear_4d_enable_align_corner(self):
# test data
dtype = 'float32'
input_shape = (1, 1, 8, 12)
output_shape = (16, 24)
input_data = torch.rand(
input_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
mode = 'bilinear'
# construct trt network
align_corners_flag = True
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
size=output_shape,
mode=mode,
align_corners=align_corners_flag,
)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'input': input_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.nn.functional.interpolate(input_data,
size=output_shape,
mode=mode)
# compare diff
torch.testing.assert_close(ref, outputs['output'])
def test_interpolate_without_scales_bicubic_4d_enable_align_corner(self):
# test data
dtype = 'float32'
input_shape = (1, 4, 8, 12)
output_shape = (16, 24)
input_data = torch.rand(
input_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
mode = 'bicubic'
# construct trt network
align_corners_flag = True
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
size=output_shape,
mode=mode,
align_corners=align_corners_flag,
)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'input': input_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.nn.functional.interpolate(input_data,
size=output_shape,
mode=mode)
# compare diff
torch.testing.assert_close(ref, outputs['output'])
def test_interpolate_with_scale_3d_nearest_exact(self):
# test data
dtype = 'float32'
input_shape = (1, 4, 8, 16)
scales_factor = (2, 4)
input_data = torch.rand(
input_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
mode = 'nearest-exact'
# construct trt network
align_corners_flag = False
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
scale_factor=scales_factor,
mode=mode,
align_corners=align_corners_flag,
)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'input': input_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.nn.functional.interpolate(input_data,
scale_factor=scales_factor,
mode=mode)
# compare diff
torch.testing.assert_close(ref, outputs['output'])
def test_interpolate_with_scale_4d_bicubic(self):
# test data
dtype = 'float32'
input_shape = (1, 4, 8, 12)
scales_factor = (2.5, 2)
input_data = torch.rand(
input_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
mode = 'bicubic'
# construct trt network
align_corners_flag = False
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
scale_factor=scales_factor,
mode=mode,
align_corners=align_corners_flag,
)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'input': input_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.nn.functional.interpolate(input_data,
scale_factor=scales_factor,
mode=mode)
# compare diff
torch.testing.assert_close(ref, outputs['output'])
def test_interpolate_with_scale_4d_bilinear(self):
# test data
dtype = 'float32'
input_shape = (1, 1, 8, 32)
scales_factor = (2.5, 4)
input_data = torch.rand(
input_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
mode = 'bilinear'
# construct trt network
align_corners_flag = False
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
scale_factor=scales_factor,
mode=mode,
align_corners=align_corners_flag,
)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'input': input_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.nn.functional.interpolate(input_data,
scale_factor=scales_factor,
align_corners=align_corners_flag,
mode=mode)
# compare diff
torch.testing.assert_close(ref, outputs['output'])
def test_interpolate_with_scale_5d_trilinear_enable_align_corner(self):
# test data
dtype = 'float32'
input_shape = (1, 1, 8, 16, 32)
scales_factor = (2.5, 2, 4)
input_data = torch.rand(
input_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
mode = 'trilinear'
# construct trt network
align_corners_flag = True
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
scale_factor=scales_factor,
mode=mode,
align_corners=align_corners_flag,
)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'input': input_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.nn.functional.interpolate(input_data,
scale_factor=scales_factor,
align_corners=align_corners_flag,
mode=mode)
# compare diff
torch.testing.assert_close(ref, outputs['output'])