TensorRT-LLMs/tests/functional/test_moe.py
Sharan Chetlur 258c7540c0 open source 09df54c0cc99354a60bbc0303e3e8ea33a96bef0 (#2725)
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

open source f8c0381a2bc50ee2739c3d8c2be481b31e5f00bd (#2736)

Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

Add note for blackwell (#2742)

Update the docs to workaround the extra-index-url issue (#2744)

update README.md (#2751)

Fix github io pages (#2761)

Update
2025-02-11 02:21:51 +00:00

1419 lines
55 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import unittest
from collections import OrderedDict
from itertools import product
import numpy as np
import pytest
# isort: off
import torch
import tensorrt as trt
# isort: on
import os
import sys
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Tensor
from tensorrt_llm._utils import (torch_to_numpy, trt_dtype_to_str,
trt_dtype_to_torch)
from tensorrt_llm.layers.lora import Lora, LoraParams
from tensorrt_llm.layers.moe import MoeConfig, MoeOOTB
from tensorrt_llm.models.modeling_utils import QuantConfig
from tensorrt_llm.quantization import QuantAlgo, QuantMode
from tensorrt_llm.quantization.quantize import fp4_quantize
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import (create_session, getSMVersion, run_session,
skip_bf16_pre_ampere, unittest_name_func)
default_actfn = 'gelu'
default_hidden_size = {
'float32': 8,
'float16': 8,
'bfloat16': 8,
'int8': 64,
'int4': 64,
'fp8': 16,
}
def make_tuple(num_experts=4,
topk=1,
hidden_size=None,
actfn=default_actfn,
bias=True,
dtype='float16',
weight_dtype=None,
norm_mode=MoeConfig.ExpertScaleNormalizationMode.NONE,
use_plugin=True,
device_limited_n_group=0,
device_limited_topk_group=0,
device_limited_routed_scaling_factor=1.0):
if weight_dtype is None:
weight_dtype = dtype
if hidden_size is None:
hidden_size = default_hidden_size[weight_dtype]
return (num_experts, topk, hidden_size, actfn, bias, dtype, weight_dtype,
norm_mode, use_plugin, device_limited_n_group,
device_limited_topk_group, device_limited_routed_scaling_factor)
def config_is_allowed(config):
# TODO: Support ootb path with getSMVersion() < 90:
enable_ootb = getSMVersion() >= 90
enable_bf16 = getSMVersion() >= 80
enable_fp8 = getSMVersion() >= 89
DATA_TYPE_INDEX = 5
WEIGHT_TYPE_INDEX = 6
USE_PLUGIN_INDEX = 8
if not enable_fp8 and config[WEIGHT_TYPE_INDEX] == 'fp8':
return False
if not enable_bf16 and config[DATA_TYPE_INDEX] == 'bfloat16':
return False
if not enable_ootb and not config[USE_PLUGIN_INDEX]:
return False
return True
def gen_uniform_weights(*args, **kwargs):
return (torch.rand(*args, **kwargs) * 2 - 1).contiguous().cuda()
def quant_dequant_int(weights, quant_mode):
# use the test version `_symmetric_...` to get the non-interleaved weights
type = torch.quint4x2 if quant_mode.is_int4_weight_only() else torch.int8
quant_weights, _, torch_weight_scales = torch.ops.trtllm._symmetric_quantize_last_axis_of_batched_matrix(
weights.T.cpu().contiguous(), type)
# Unpack the int4s int int8s
if quant_mode.is_int4_weight_only():
upper = (quant_weights >> 4)
lower = (quant_weights << 4) >> 4 # Arithmetic right shift sign extends
quant_weights = torch.stack((lower, upper), dim=2).view(weights.T.shape)
quant_weights = quant_weights.to(dtype=weights.dtype)
result = torch.multiply(quant_weights,
torch_weight_scales.unsqueeze(0)).T.contiguous()
return result.to(device=weights.device)
def quant_fp4(weights):
num_experts = 1 if len(weights.shape) == 2 else weights.shape[0]
from modelopt.torch.quantization.qtensor import NVFP4QTensor
if num_experts == 1:
quant_weights, scale, _ = NVFP4QTensor.quantize(
weights,
block_size=16,
weights_scaling_factor_2=torch.tensor([1.0],
dtype=torch.float32,
device=weights.device))
quant_weights = quant_weights._quantized_data
else:
quant_weight_list = []
scale_list = []
for i in range(num_experts):
quant_weights, scale, _ = NVFP4QTensor.quantize(
weights[i],
block_size=16,
weights_scaling_factor_2=torch.tensor([1.0],
dtype=torch.float32,
device=weights.device))
quant_weights = quant_weights._quantized_data
quant_weight_list.append(quant_weights)
scale_list.append(scale)
quant_weights = torch.stack(quant_weight_list, dim=0)
scale = torch.stack(scale_list, dim=0)
# quant_weights, scale = torch.ops.tensorrt_llm.half_to_e2m1_and_ufp8sf_scale(
# weights.cuda(),
# torch.FloatTensor([1.0] * num_experts).cuda(), 16, 1)
shape_prefix = weights.shape[:-1]
quant_weights = quant_weights.view(torch.int64).view(*shape_prefix,
-1).cpu()
scale = scale.view(torch.int32).view(*shape_prefix, -1).cpu()
return quant_weights, scale
def quant_dequant(weights, quant_mode):
if quant_mode.is_weight_only():
return quant_dequant_int(weights, quant_mode)
return weights
GATED_TO_ACT = {
'swiglu': 'silu',
'geglu': 'gelu',
}
def is_gated_activation(actfn):
return actfn in GATED_TO_ACT
def gated2act(actfn):
if is_gated_activation(actfn):
return GATED_TO_ACT[actfn]
return actfn
def doact(input, actfn):
assert not is_gated_activation(actfn)
if actfn == 'gelu':
return torch.nn.functional.gelu(input)
if actfn == 'relu':
return torch.nn.functional.relu(input)
if actfn == 'silu':
return torch.nn.functional.silu(input)
assert actfn == "identity"
return input # Identity
def gated_matmul(input, weights, bias, actfn):
assert is_gated_activation(actfn)
fc1 = torch.matmul(input, weights.T) + bias
fc1, gate = fc1.chunk(2, dim=-1)
return fc1 * doact(gate, gated2act(actfn))
class TestMoE(unittest.TestCase):
def setUp(self):
# There is a known precision issues where the topk may select different experts when the routing probabilities are similar.
# This causes a completely different output for the affected tokens. So we set the seed to prevent sporadic failures
# This shouldn't be a problem for most practical applications as it means the experts are equally good choices
torch.manual_seed(0x766E)
tensorrt_llm.logger.set_level('error')
def eye(self, shape, dtype, device='cuda'):
""" Utility function for creating expert weights as an identity matrix for easy debugging """
eye = torch.eye(shape[-2], m=shape[-1], dtype=dtype, device=device)
eye = eye.repeat(*shape[:-2], 1, 1)
return eye
@staticmethod
def get_params():
params = []
params += [
make_tuple(num_experts=1, topk=1, dtype='float16'),
make_tuple(num_experts=4, topk=2, dtype='float16'),
# Non-powers of two have special handling for plugin softmax
make_tuple(num_experts=42, topk=3, dtype='float16'),
# Experts > 256 have special handling for plugin softmax
make_tuple(num_experts=1024, topk=3, dtype='float16'),
]
# OOTB test
params += [
make_tuple(num_experts=1, topk=1, dtype='float16',
use_plugin=False),
make_tuple(num_experts=4, topk=2, dtype='float16',
use_plugin=False),
make_tuple(num_experts=42,
topk=3,
dtype='float16',
use_plugin=False),
]
# Hidden size
params += [
make_tuple(hidden_size=128, dtype='float16'),
]
# Add a test for float32
params += [
make_tuple(dtype='float32'),
make_tuple(dtype='float32', use_plugin=False),
]
# Add a test for bfloat16
params += [
make_tuple(dtype='bfloat16'),
]
# Add some cases for quantized dtype
for dtype in ('int8', 'int4'):
params += [
make_tuple(dtype='float16', hidden_size=64, weight_dtype=dtype),
]
params += [
make_tuple(dtype='bfloat16', hidden_size=64, weight_dtype=dtype)
]
# fp8 tests
params += [
make_tuple(weight_dtype='fp8', bias=False),
make_tuple(dtype='bfloat16', weight_dtype='fp8', bias=False),
make_tuple(topk=2, weight_dtype='fp8', bias=False),
make_tuple(num_experts=5, topk=2, weight_dtype='fp8', bias=False),
]
# Test all activation functions with float16
for actfn in ('relu', 'silu', 'gelu', 'swiglu', 'geglu', 'identity'):
if actfn == default_actfn:
continue # Dont need to retest the activation function every other case uses
params += [
make_tuple(actfn=actfn, dtype='float16'),
make_tuple(actfn=actfn, dtype='float16', use_plugin=False)
]
# Test gated with all data types as it has a different path
for actfn in ('swiglu', 'geglu'):
if actfn == default_actfn:
continue # Dont need to retest the one every other case uses
params += [
make_tuple(actfn=actfn, dtype='float32'),
make_tuple(actfn=actfn, dtype='float16', weight_dtype='int8'),
make_tuple(actfn=actfn, dtype='bfloat16'),
make_tuple(actfn='geglu',
dtype='float16',
weight_dtype='fp8',
bias=False)
]
# Test different k values for gated activations (regression case)
params += [
make_tuple(actfn='geglu', topk=2, dtype='float16'),
]
# Test no bias
params += [
make_tuple(bias=False, dtype='float32'),
make_tuple(bias=False, dtype='float16'),
make_tuple(dtype='float16', weight_dtype='int8', bias=False),
make_tuple(dtype='float16', weight_dtype='int4', bias=False),
]
# Test renormalization
params += [
make_tuple(
topk=2,
dtype='float32',
norm_mode=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE),
make_tuple(
topk=2,
dtype='float16',
norm_mode=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE),
make_tuple(
dtype='bfloat16',
topk=2,
norm_mode=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE),
make_tuple(
weight_dtype='fp8',
topk=2,
norm_mode=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE,
bias=False),
# Renorm affects the final accumulate, so sanity check with no bias too
make_tuple(
norm_mode=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE,
topk=2,
dtype='float16',
bias=False),
]
# Test OOTB renormalization
params += [
make_tuple(
topk=2,
dtype='float32',
norm_mode=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE,
use_plugin=False),
make_tuple(
topk=2,
dtype='float16',
norm_mode=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE,
use_plugin=False),
make_tuple(
topk=2,
dtype='bfloat16',
norm_mode=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE,
use_plugin=False),
]
# Test device-limited routing
params += [
make_tuple(
num_experts=80,
topk=3,
hidden_size=1280,
actfn='swiglu',
bias=True,
dtype='float16',
weight_dtype='float16',
norm_mode=MoeConfig.ExpertScaleNormalizationMode.DEVICE_LIMITED,
use_plugin=True,
device_limited_n_group=8,
device_limited_topk_group=3,
device_limited_routed_scaling_factor=16.0),
make_tuple(num_experts=80,
topk=3,
hidden_size=1280,
actfn='swiglu',
bias=True,
dtype='float16',
weight_dtype='float16',
norm_mode=MoeConfig.ExpertScaleNormalizationMode.
DEVICE_LIMITED_RENORM,
use_plugin=True,
device_limited_n_group=8,
device_limited_topk_group=3,
device_limited_routed_scaling_factor=16.0),
]
# Default configuration for mixtral
params += [
make_tuple(
num_experts=8,
topk=2,
norm_mode=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE,
hidden_size=2048,
dtype='bfloat16',
actfn='swiglu')
]
filtered_params = []
for p in params:
if config_is_allowed(p):
filtered_params.append(p)
return filtered_params
def create_weights(self, num_experts, hidden_size, ffn_hidden_size, bias,
dtype, weight_dtype, is_gated):
self.router_weights = torch.randn((num_experts, hidden_size),
dtype=torch.float32,
device="cuda")
# Use a uniform scale for int8 so the quantization has a well-behaved dynamic range
genfn = gen_uniform_weights if weight_dtype == trt.int8 else torch.randn
# Rescale the weights if we are using gated so the results are in a similar range
# This is 'about right' to keep the variance the same based on some napkin maths
fc1_weight_rescale = 1 / math.sqrt(2) if is_gated else 1
fc2_weight_rescale = 1
if genfn == torch.randn:
fc1_weight_rescale *= math.sqrt(2.0 / ffn_hidden_size)
fc2_weight_rescale *= math.sqrt(2.0 / hidden_size)
fc1_out_size = ffn_hidden_size * 2 if is_gated else ffn_hidden_size
self.fc1_weights = genfn((num_experts, fc1_out_size, hidden_size),
dtype=trt_dtype_to_torch(dtype),
device="cuda") * fc1_weight_rescale
self.fc2_weights = genfn((num_experts, hidden_size, ffn_hidden_size),
dtype=trt_dtype_to_torch(dtype),
device="cuda") * fc2_weight_rescale
bias_tensor_func = genfn if bias else torch.zeros
self.fc1_bias = bias_tensor_func((num_experts, fc1_out_size),
dtype=trt_dtype_to_torch(dtype),
device="cuda")
self.fc2_bias = bias_tensor_func((num_experts, hidden_size),
dtype=trt_dtype_to_torch(dtype),
device="cuda")
# Set later
self.weight_scaling_factor_1 = None
self.weight_scaling_factor_2 = None
self.activation_scaling_factor_1 = None
self.activation_scaling_factor_2 = None
def create_lora_weights(self, num_experts, hidden_size, ffn_hidden_size,
dtype, num_reqs, lora_rank):
genfn = torch.randn
self.lora_rank = lora_rank
fc1_weight_rescale_1 = math.sqrt(2.0 / lora_rank)
fc1_weight_rescale_2 = math.sqrt(2.0 / ffn_hidden_size)
fc2_weight_rescale_1 = math.sqrt(2.0 / lora_rank)
fc2_weight_rescale_2 = math.sqrt(2.0 / hidden_size)
self.lora_fc1_weights_1 = (genfn(
(num_experts, lora_rank, hidden_size),
dtype=trt_dtype_to_torch(dtype),
device="cuda",
) * fc1_weight_rescale_1)
self.lora_fc1_weights_2 = (genfn(
(num_experts, ffn_hidden_size, lora_rank),
dtype=trt_dtype_to_torch(dtype),
device="cuda",
) * fc1_weight_rescale_2)
self.lora_fc1_weights_ptrs = torch.tensor(
(self.lora_fc1_weights_1.data_ptr(),
self.lora_fc1_weights_2.data_ptr()),
dtype=torch.int64,
).repeat(num_reqs, 1)
self.lora_fc1_ranks = torch.tensor((lora_rank, ),
dtype=torch.int32).repeat(num_reqs)
self.lora_gated_weights_1 = (genfn(
(num_experts, lora_rank, hidden_size),
dtype=trt_dtype_to_torch(dtype),
device="cuda",
) * fc1_weight_rescale_1)
self.lora_gated_weights_2 = (genfn(
(num_experts, ffn_hidden_size, lora_rank),
dtype=trt_dtype_to_torch(dtype),
device="cuda",
) * fc1_weight_rescale_2)
self.lora_gated_weights_ptrs = torch.tensor(
(self.lora_gated_weights_1.data_ptr(),
self.lora_gated_weights_2.data_ptr()),
dtype=torch.int64,
).repeat(num_reqs, 1)
self.lora_gated_ranks = torch.tensor((lora_rank, ),
dtype=torch.int32).repeat(num_reqs)
self.lora_fc2_weights_1 = (genfn(
(num_experts, lora_rank, ffn_hidden_size),
dtype=trt_dtype_to_torch(dtype),
device="cuda",
) * fc2_weight_rescale_1)
self.lora_fc2_weights_2 = (genfn(
(num_experts, hidden_size, lora_rank),
dtype=trt_dtype_to_torch(dtype),
device="cuda",
) * fc2_weight_rescale_2)
self.lora_fc2_weights_ptrs = torch.tensor(
(self.lora_fc2_weights_1.data_ptr(),
self.lora_fc2_weights_2.data_ptr()),
dtype=torch.int64,
).repeat(num_reqs, 1)
self.lora_fc2_ranks = torch.tensor((lora_rank, ),
dtype=torch.int32).repeat(num_reqs)
def create_lora_params(self, num_reqs):
moe_h_to_4h_weights_pointers = Tensor(
shape=(num_reqs, 2),
dtype=tensorrt_llm.str_dtype_to_trt("int64"),
name="moe_h_to_4h_weights_pointers",
)
moe_h_to_4h_lora_ranks = Tensor(
shape=(num_reqs, ),
dtype=tensorrt_llm.str_dtype_to_trt("int32"),
name="moe_h_to_4h_lora_ranks",
)
moe_4h_to_h_weights_pointers = Tensor(
shape=(num_reqs, 2),
dtype=tensorrt_llm.str_dtype_to_trt("int64"),
name="moe_4h_to_h_weights_pointers",
)
moe_4h_to_h_lora_ranks = Tensor(
shape=(num_reqs, ),
dtype=tensorrt_llm.str_dtype_to_trt("int32"),
name="moe_4h_to_h_lora_ranks",
)
moe_gate_weights_pointers = Tensor(
shape=(num_reqs, 2),
dtype=tensorrt_llm.str_dtype_to_trt("int64"),
name="moe_gate_weights_pointers",
)
moe_gate_lora_ranks = Tensor(
shape=(num_reqs, ),
dtype=tensorrt_llm.str_dtype_to_trt("int32"),
name="moe_gate_lora_ranks",
)
host_context_lengths = Tensor(
shape=(num_reqs, ),
dtype=tensorrt_llm.str_dtype_to_trt("int32"),
name="host_context_lengths",
)
host_request_types = Tensor(
shape=(num_reqs, ),
dtype=tensorrt_llm.str_dtype_to_trt("int32"),
name="host_request_types",
)
self.lora_params = LoraParams(
lora_ranks=[{
"moe_h_to_4h_lora_ranks": moe_h_to_4h_lora_ranks,
"moe_4h_to_h_lora_ranks": moe_4h_to_h_lora_ranks,
"moe_gate_lora_ranks": moe_gate_lora_ranks,
"mlp_h_to_4h_lora_ranks": moe_h_to_4h_lora_ranks,
"mlp_4h_to_h_lora_ranks": moe_4h_to_h_lora_ranks,
"mlp_gate_lora_ranks": moe_gate_lora_ranks,
}],
lora_weights_pointers=[{
"moe_h_to_4h_lora_weights_pointers":
moe_h_to_4h_weights_pointers,
"moe_4h_to_h_lora_weights_pointers":
moe_4h_to_h_weights_pointers,
"moe_gate_lora_weights_pointers":
moe_gate_weights_pointers,
"mlp_h_to_4h_lora_weights_pointers":
moe_h_to_4h_weights_pointers,
"mlp_4h_to_h_lora_weights_pointers":
moe_4h_to_h_weights_pointers,
"mlp_gate_lora_weights_pointers":
moe_gate_weights_pointers,
}],
host_context_lengths=host_context_lengths,
host_request_types=host_request_types,
weight_index=0,
)
@staticmethod
def max_abs_tensor(tensor):
return torch.max(torch.abs(tensor.view(-1, np.prod(tensor.shape[-2:]))),
dim=1,
keepdim=True)[0].float()
def create_fp8_scaling_factors(self, max_act1, max_act2):
self.activation_scaling_factor_1 = torch.tensor([max_act1
]).float() / 440.
self.activation_scaling_factor_2 = torch.tensor([max_act2
]).float() / 440.
self.weight_scaling_factor_1 = TestMoE.max_abs_tensor(
self.fc1_weights) / 440.
self.weight_scaling_factor_2 = TestMoE.max_abs_tensor(
self.fc2_weights) / 440.
@parameterized.expand(get_params(), name_func=unittest_name_func)
def test_mixture_of_experts(self, num_experts, top_k, hidden_size, actfn,
bias, dtype_str, weight_dtype_str, norm_mode,
use_plugin, device_limited_n_group,
device_limited_topk_group,
device_limited_routed_scaling_factor):
""" This test compares the MOE result to a simple reference implementation using torch """
# Build time is also proportional to the size of these (more plugin profiler runs) so dont make them too big
# TODO Increasing these also cause some failures (observed on Hopper), not sure if this is a problem or not
max_num_seq = 10
max_seq_len = 4
dtype = tensorrt_llm.str_dtype_to_trt(dtype_str)
use_fp8_qdq = weight_dtype_str == 'fp8'
use_int4_weights = weight_dtype_str == 'int4'
weight_dtype = trt.int8 if use_int4_weights else tensorrt_llm.str_dtype_to_trt(
weight_dtype_str)
quant_mode = QuantMode(0)
if use_fp8_qdq:
quant_mode = quant_mode.set_fp8_qdq()
elif weight_dtype != dtype:
quant_mode = QuantMode.use_weight_only(
use_int4_weights=use_int4_weights)
ffn_hidden_size = 4 * hidden_size
self.create_weights(num_experts,
hidden_size,
ffn_hidden_size,
bias,
dtype,
weight_dtype,
is_gated=is_gated_activation(actfn))
sequence_sizes = [(1, 1), (max_num_seq, max_seq_len)]
inputs = [gen_uniform_weights((num_seq, seq_len, hidden_size), dtype=trt_dtype_to_torch(dtype)) \
for num_seq, seq_len in sequence_sizes]
reference_values = []
act_1_quant = max(*[torch.max(torch.abs(v)).item() for v in inputs])
act_2_quant = 0.0
for i, input in enumerate(inputs):
result, act2_quant_values = self.generate_reference(
input, top_k, actfn, weight_dtype, quant_mode, norm_mode,
device_limited_n_group, device_limited_topk_group,
device_limited_routed_scaling_factor)
reference_values.append(result)
act_2_quant = max(act_2_quant, act2_quant_values)
self.create_fp8_scaling_factors(act_1_quant, act_2_quant)
# build trt engine
session = self.create_trt_session(
(-1, -1, hidden_size),
num_experts,
top_k,
hidden_size,
ffn_hidden_size,
actfn,
bias,
dtype,
weight_dtype=weight_dtype,
quant_mode=quant_mode,
norm_mode=norm_mode,
use_plugin=use_plugin,
max_sizes=[max_num_seq, max_seq_len, hidden_size],
device_limited_n_group=device_limited_n_group,
device_limited_topk_group=device_limited_topk_group,
device_limited_routed_scaling_factor=
device_limited_routed_scaling_factor)
for input, ref in zip(inputs, reference_values):
# run trt output
inputs = {"input_hidden_states": input}
outputs = run_session(session, inputs)
tight_tolerances = {
'float32': 1e-2,
'float16': 1e-2,
'bfloat16': 1e-2,
'fp4': 2e-2,
'fp8': 5e-2,
'int8': 5e-2,
'int4': 5e-2,
}
assert torch.sum(
torch.isclose(outputs['output'].float(),
ref.float(),
atol=tight_tolerances[weight_dtype_str],
rtol=tight_tolerances[weight_dtype_str])).item(
) >= math.floor(torch.numel(input) * 0.95)
tolerances = {
'float32': 1e-2,
'float16': 5e-2,
'bfloat16': 5e-2,
'fp4': 5e-2,
'fp8': 2e-1,
'int8': 2e-1,
'int4': 2e-1,
}
tolerance = tolerances[weight_dtype_str]
# Bit of a hack to allow bigger tolerance for the Mixtral tests
if hidden_size > 1024:
# Set a higher tolerance because we hit a small fraction of outlier cases (<<1%)
tolerance = 0.3
torch.testing.assert_close(outputs['output'].float(),
ref.float(),
rtol=tolerance,
atol=tolerance)
@staticmethod
def get_mlp_params():
params = []
for actfn in ('gelu', 'geglu'):
params += [('float32', actfn, True), ('float16', actfn, True),
('bfloat16', actfn, True), ('int8', actfn, True),
('int4', actfn, True)]
# OOTB tests
# TODO: Support ootb path with getSMVersion() < 90, quantization:
if getSMVersion() >= 90:
params += [('float32', actfn, False), ('float16', actfn, False),
('bfloat16', actfn, False)]
if getSMVersion() >= 100:
params += [('fp4', actfn, True), ('fp4', actfn, False)]
return params
@parameterized.expand(get_mlp_params(), name_func=unittest_name_func)
def test_mlp_comparison(self, dtype_str, actfn, use_plugin):
""" This test uses one expert and compares the result to a plain MLP """
skip_bf16_pre_ampere(dtype_str)
use_int4_weights = dtype_str == 'int4'
custom_map = {
"int4": trt.int8,
"fp4": trt.float16,
}
weight_dtype = custom_map[
dtype_str] if dtype_str in custom_map else tensorrt_llm.str_dtype_to_trt(
dtype_str)
dtype = weight_dtype
quant_mode = QuantMode(0)
hidden_size = 8
if dtype_str == 'int8' or dtype_str == 'int4':
dtype = tensorrt_llm.str_dtype_to_trt("float16")
hidden_size = 64
quant_mode = QuantMode.use_weight_only(
use_int4_weights=use_int4_weights)
elif dtype_str == "fp4":
quant_mode = QuantMode.NVFP4
hidden_size = 256 # At least vector_size * 16 to make padding simple
num_sequences = 5
sequence_lengths = 4
num_experts = 1 # 4 # TODO Ampere fails to build the TRT network with multiple experts
top_k = num_experts # All tokens to all experts to make the comparison trivial
bias = not quant_mode.has_nvfp4()
ffn_hidden_size = 4 * hidden_size
self.create_weights(num_experts,
hidden_size,
ffn_hidden_size,
bias,
dtype,
weight_dtype,
is_gated=is_gated_activation(actfn))
# Override the router to ensure all values have the same scale
for i in range(num_experts):
self.router_weights[i] = torch.squeeze(
torch.eye(hidden_size, m=1, dtype=torch.float32, device="cuda"))
input_data = gen_uniform_weights(
(num_sequences, sequence_lengths, hidden_size),
dtype=trt_dtype_to_torch(dtype))
def MLP(network, trt_key):
output = trt_key * 0.0
for i in range(num_experts):
mlp_type = tensorrt_llm.layers.GatedMLP if is_gated_activation(
actfn) else tensorrt_llm.layers.MLP
mlp = mlp_type(hidden_size=hidden_size,
ffn_hidden_size=ffn_hidden_size,
hidden_act=gated2act(actfn),
bias=bias,
quant_mode=quant_mode,
dtype=dtype)
if quant_mode.has_nvfp4():
quant_config = QuantConfig(quant_algo=QuantAlgo.NVFP4)
mlp = fp4_quantize(mlp, quant_config)
mlp.quant_mode = quant_mode
# Quantize the weights manually so the results are comparable
fc1_qd = quant_dequant(self.fc1_weights[i].cpu(), quant_mode)
if is_gated_activation(actfn):
# Note that the MLP uses the opposite convention to the GLU paper for naming,
# the gate is the matrix the activations are NOT applied to
gate, fc1_qd = fc1_qd.chunk(2, dim=0)
if quant_mode.has_nvfp4():
gate, block_scale = quant_fp4(gate)
self.set_fp4_scales(mlp.gate, block_scale, 1)
mlp.gate.weight.value = np.ascontiguousarray(
torch_to_numpy(gate))
if quant_mode.has_nvfp4():
fc1_qd, block_scale = quant_fp4(fc1_qd)
self.set_fp4_scales(mlp.fc, block_scale, 1)
mlp.fc.weight.value = np.ascontiguousarray(
torch_to_numpy(fc1_qd))
fc2_qd = quant_dequant(self.fc2_weights[i].cpu(), quant_mode)
if quant_mode.has_nvfp4():
fc2_qd, block_scale = quant_fp4(fc2_qd)
self.set_fp4_scales(mlp.proj, block_scale, 1)
mlp.proj.weight.value = np.ascontiguousarray(
torch_to_numpy(fc2_qd))
if bias:
fc1_bias = self.fc1_bias[i].cpu()
if is_gated_activation(actfn):
gate, fc1_bias = fc1_bias.chunk(2, dim=0)
mlp.gate.bias.value = np.ascontiguousarray(
torch_to_numpy(gate))
mlp.fc.bias.value = np.ascontiguousarray(
torch_to_numpy(fc1_bias))
mlp.proj.bias.value = np.ascontiguousarray(
torch_to_numpy(self.fc2_bias[i].cpu()))
output += mlp(trt_key) / num_experts
output.mark_output('mlp_output', dtype)
session = self.create_trt_session(
tuple(input_data.shape),
num_experts,
top_k,
hidden_size,
ffn_hidden_size,
actfn,
bias,
dtype,
weight_dtype,
quant_mode,
norm_mode=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE,
custom_network=MLP,
use_plugin=use_plugin)
inputs = {"input_hidden_states": input_data}
outputs = run_session(session, inputs)
tight_tolerances = {
'float32': 1e-2,
'float16': 1e-2,
'bfloat16': 1e-2,
'fp4': 1.5e-2,
'int8': 5e-2,
'int4': 5e-2,
}
result = torch.sum(
torch.isclose(outputs["output"],
outputs["mlp_output"],
atol=tight_tolerances[dtype_str],
rtol=tight_tolerances[dtype_str])).item()
assert result >= math.floor(torch.numel(input_data) * 0.95)
loose_tolerances = {
'float32': 1e-2,
'float16': 2e-2
if getSMVersion() >= 75 else 1e-1, # Some issues for geglu on volta
'bfloat16': 1e-1,
'int8': 2e-1,
'int4': 2e-1,
'fp4': 6e-2,
}
torch.testing.assert_close(
outputs["output"],
outputs["mlp_output"],
rtol=loose_tolerances[dtype_str],
atol=loose_tolerances[dtype_str],
)
@staticmethod
def get_ootb_comp_params():
params = []
for actfn in ('gelu', 'geglu'):
for experts, k in [(8, 2), (10, 3)]:
dtypes = ['float16', 'bfloat16', 'fp8']
if getSMVersion() >= 100:
dtypes += ['fp4']
for dtype in dtypes:
params.append((dtype, experts, k, actfn))
return params
@parameterized.expand(get_ootb_comp_params(), name_func=unittest_name_func)
def test_ootb_comparison(self, dtype_str, num_experts, top_k, actfn):
""" This test uses one expert and compares the result to a plain MLP """
if getSMVersion() < 90:
pytest.skip("OOTB tests disabled on pre-Hopper architectures")
use_int4_weights = dtype_str == 'int4'
custom_map = {
"int4": trt.int8,
"fp4": trt.float16,
}
weight_dtype = custom_map[
dtype_str] if dtype_str in custom_map else tensorrt_llm.str_dtype_to_trt(
dtype_str)
dtype = weight_dtype
quant_mode = QuantMode(0)
hidden_size = 8
if dtype_str == "fp8":
dtype = tensorrt_llm.str_dtype_to_trt("bfloat16")
quant_mode = QuantMode.FP8_QDQ
hidden_size = 64
elif dtype_str == "fp4":
quant_mode = QuantMode.NVFP4
hidden_size = 256 # At least vector_size * 16 to make padding simple
num_sequences = 5
sequence_lengths = 4
bias = not quant_mode.has_nvfp4() and not quant_mode.has_fp8_qdq()
ffn_hidden_size = 4 * hidden_size
self.create_weights(num_experts,
hidden_size,
ffn_hidden_size,
bias,
dtype,
weight_dtype,
is_gated=is_gated_activation(actfn))
input_data = gen_uniform_weights(
(num_sequences, sequence_lengths, hidden_size),
dtype=trt_dtype_to_torch(dtype))
if quant_mode.has_fp8_qdq():
max_act = TestMoE.max_abs_tensor(input_data.view(-1, hidden_size))
max_weight = TestMoE.max_abs_tensor(
self.fc1_weights.view(-1, hidden_size))
self.create_fp8_scaling_factors(max_act, max_act * max_weight)
session_moe = self.create_trt_session(
tuple(input_data.shape),
num_experts,
top_k,
hidden_size,
ffn_hidden_size,
actfn,
bias,
dtype,
weight_dtype,
quant_mode,
norm_mode=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE,
use_plugin=True)
session_ootb = self.create_trt_session(
tuple(input_data.shape),
num_experts,
top_k,
hidden_size,
ffn_hidden_size,
actfn,
bias,
dtype,
weight_dtype,
quant_mode,
norm_mode=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE,
use_plugin=False)
inputs = {"input_hidden_states": input_data}
outputs_moe = run_session(session_moe, inputs)
outputs_ootb = run_session(session_ootb, inputs)
tight_tolerances = {
'float32': 5e-2,
'float16': 5e-2,
'bfloat16': 5e-2,
'fp4': 5e-2,
'fp8': 5e-2,
'int8': 5e-2,
'int4': 5e-2,
}
assert torch.sum(
torch.isclose(
outputs_moe["output"],
outputs_ootb["output"],
atol=tight_tolerances[dtype_str],
rtol=tight_tolerances[dtype_str])).item() >= math.floor(
torch.numel(input_data) * 0.95)
tolerances = {
'float32': 1e-2,
'float16': 1e-2,
'bfloat16': 2e-2,
'fp4': 5e-2,
'fp8': 7e-2,
'int8': 1e-1,
'int4': 1e-1,
}
torch.testing.assert_close(
outputs_moe["output"],
outputs_ootb["output"],
rtol=tolerances[dtype_str],
atol=tolerances[dtype_str],
)
@parameterized.expand(list(
product(["float16", "bfloat16", "int4", "int8"], ["gelu", "geglu"],
[True], [32, 64])),
name_func=unittest_name_func)
def test_mlp_lora_comparison(self, dtype_str, actfn, use_plugin, lora_rank):
"""This test uses one expert and compares the result to a plain MLP"""
skip_bf16_pre_ampere(dtype_str)
use_int4_weights = dtype_str == "int4"
weight_dtype = (trt.int8 if use_int4_weights else
tensorrt_llm.str_dtype_to_trt(dtype_str))
dtype = weight_dtype
quant_mode = QuantMode(0)
hidden_size = 8
if dtype_str == "int8" or dtype_str == "int4":
dtype = tensorrt_llm.str_dtype_to_trt("float16")
hidden_size = 64
quant_mode = QuantMode.use_weight_only(
use_int4_weights=use_int4_weights)
num_sequences = 4
sequence_lengths = 4
num_experts = 1
top_k = 1
bias = False
ffn_hidden_size = 4 * hidden_size
self.create_weights(
num_experts,
hidden_size,
ffn_hidden_size,
bias,
dtype,
weight_dtype,
is_gated=is_gated_activation(actfn),
)
self.create_lora_weights(
num_experts,
hidden_size,
ffn_hidden_size,
dtype,
num_sequences,
lora_rank,
)
input_data = gen_uniform_weights(
(num_sequences, sequence_lengths, hidden_size),
dtype=trt_dtype_to_torch(dtype),
)
def MLP(network, trt_key, lora_params):
mlp_type = (tensorrt_llm.layers.GatedMLP if
is_gated_activation(actfn) else tensorrt_llm.layers.MLP)
mlp = mlp_type(
hidden_size=hidden_size,
ffn_hidden_size=ffn_hidden_size,
hidden_act=gated2act(actfn),
bias=bias,
quant_mode=quant_mode,
dtype=dtype,
)
mlp.fc.lora = Lora(
in_hidden_size=hidden_size,
out_hidden_sizes=[ffn_hidden_size],
max_low_rank=lora_rank,
)
mlp.proj.lora = Lora(
in_hidden_size=ffn_hidden_size,
out_hidden_sizes=[hidden_size],
max_low_rank=lora_rank,
)
if is_gated_activation(actfn):
mlp.gate.lora = Lora(
in_hidden_size=hidden_size,
out_hidden_sizes=[ffn_hidden_size],
max_low_rank=lora_rank,
)
# Quantize the weights manually so the results are comparable
fc1_qd = quant_dequant(self.fc1_weights[0].cpu(), quant_mode)
if is_gated_activation(actfn):
# Note that the MLP uses the opposite convention to the GLU paper for naming,
# the gate is the matrix the activations are NOT applied to
gate, fc1_qd = fc1_qd.chunk(2, dim=0)
mlp.gate.weight.value = np.ascontiguousarray(
torch_to_numpy(gate))
mlp.fc.weight.value = np.ascontiguousarray(torch_to_numpy(fc1_qd))
fc2_qd = quant_dequant(self.fc2_weights[0].cpu(), quant_mode)
mlp.proj.weight.value = np.ascontiguousarray(torch_to_numpy(fc2_qd))
if bias:
fc1_bias = self.fc1_bias[0].cpu()
if is_gated_activation(actfn):
gate, fc1_bias = fc1_bias.chunk(2, dim=0)
mlp.gate.bias.value = np.ascontiguousarray(
torch_to_numpy(gate))
mlp.fc.bias.value = np.ascontiguousarray(
torch_to_numpy(fc1_bias))
mlp.proj.bias.value = np.ascontiguousarray(
torch_to_numpy(self.fc2_bias[0].cpu()))
output = mlp(trt_key, lora_params)
output.mark_output("mlp_output", dtype)
session = self.create_trt_session(
tuple(input_data.shape),
num_experts,
top_k,
hidden_size,
ffn_hidden_size,
actfn,
bias,
dtype,
weight_dtype,
quant_mode,
norm_mode=MoeConfig.ExpertScaleNormalizationMode.NONE,
custom_network=MLP,
use_plugin=use_plugin,
use_lora=True,
)
inputs = {
"input_hidden_states":
input_data,
"moe_h_to_4h_weights_pointers":
self.lora_fc1_weights_ptrs,
"moe_h_to_4h_lora_ranks":
self.lora_fc1_ranks,
"moe_4h_to_h_weights_pointers":
self.lora_fc2_weights_ptrs,
"moe_4h_to_h_lora_ranks":
self.lora_fc2_ranks,
"moe_gate_weights_pointers":
self.lora_gated_weights_ptrs,
"moe_gate_lora_ranks":
self.lora_gated_ranks,
"host_context_lengths":
torch.tensor((sequence_lengths, ),
dtype=torch.int32).repeat(num_sequences),
"host_request_types":
torch.tensor((0, ), dtype=torch.int32).repeat(num_sequences),
}
outputs = run_session(session, inputs)
tolerances = {
"float32": 1e-2,
"float16": (2e-2 if getSMVersion() >= 75 else
1e-1), # Some issues for geglu on volta
"bfloat16": 1e-1,
"int8": 2e-1,
"int4": 2e-1,
}
torch.testing.assert_close(
outputs["output"],
outputs["mlp_output"],
rtol=tolerances[dtype_str],
atol=tolerances[dtype_str],
)
def set_fp4_scales(self, moe_weight_wrapper, scale_factor: Tensor,
num_experts):
moe_weight_wrapper.weights_block_scaling_factor.value = np.ascontiguousarray(
torch_to_numpy(scale_factor.view(torch.float8_e4m3fn)))
moe_weight_wrapper.weights_block_scaling_factor_interleaved.value = (
np.ascontiguousarray(
torch_to_numpy(
torch.ops.tensorrt_llm.nvfp4_block_scale_interleave(
scale_factor.view(torch.uint8).cpu().contiguous()).view(
scale_factor.dtype).reshape(
scale_factor.shape).view(torch.uint8))))
moe_weight_wrapper.activation_global_scaling_factor.value = np.array(
[1.], dtype=np.float32)
moe_weight_wrapper.alpha.value = np.array([1.] * num_experts,
dtype=np.float32)
def set_weight_layer(self,
input_weights,
moe_weight_wrapper,
quant_mode,
fp8_scalar=None):
if quant_mode.is_weight_only():
torch_transpose = torch.transpose(input_weights, 1,
2).contiguous().cpu()
type = torch.quint4x2 if quant_mode.is_int4_weight_only(
) else torch.int8
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
torch_transpose, type)
# Change the shape to what moe expects without touching the underlying format
moe_weight_wrapper.weight.value = np.ascontiguousarray(
torch_to_numpy(processed_torch_weights))
moe_weight_wrapper.per_channel_scale.value = np.ascontiguousarray(
torch_to_numpy(torch_weight_scales))
elif quant_mode.has_fp8_qdq():
processed_torch_weights = (input_weights /
fp8_scalar.unsqueeze(-1)).to(
torch.float8_e4m3fn)
moe_weight_wrapper.weight.value = np.ascontiguousarray(
torch_to_numpy(processed_torch_weights))
moe_weight_wrapper.weights_scaling_factor.value = np.ascontiguousarray(
torch_to_numpy(fp8_scalar))
elif quant_mode.has_nvfp4():
processed_torch_weights, torch_weight_scales = quant_fp4(
input_weights)
self.set_fp4_scales(moe_weight_wrapper, torch_weight_scales,
input_weights.shape[0])
moe_weight_wrapper.weight.value = np.ascontiguousarray(
torch_to_numpy(processed_torch_weights))
else:
moe_weight_wrapper.weight.value = np.ascontiguousarray(
torch_to_numpy(input_weights))
def create_trt_session(
self,
input_shape,
num_experts,
top_k,
hidden_size,
ffn_hidden_size,
actfn,
bias,
dtype: trt.DataType,
weight_dtype: trt.DataType,
quant_mode,
norm_mode,
custom_network=None,
use_plugin=True,
max_sizes=None,
use_lora=False,
device_limited_n_group=0,
device_limited_topk_group=0,
device_limited_routed_scaling_factor=1.0,
):
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
if max_sizes:
dim_range = OrderedDict([("max_num_seq", [[1, 1,
max_sizes[0]]]),
("max_seq_len", [[1, 1,
max_sizes[1]]]),
("hidden_size", [hidden_size])])
else:
dim_range = None
trt_key = Tensor(name='input_hidden_states',
shape=input_shape,
dim_range=dim_range,
dtype=dtype)
network.plugin_config.moe_plugin = trt_dtype_to_str(dtype)
lora_params = None
if use_lora:
network.plugin_config.lora_plugin = trt_dtype_to_str(dtype)
network.plugin_config.remove_input_padding = False
self.create_lora_params(input_shape[0])
lora_params = self.lora_params
moe_config = MoeConfig(
num_experts=num_experts,
top_k=top_k,
normalization_mode=norm_mode,
device_limited_n_group=device_limited_n_group,
device_limited_topk_group=device_limited_topk_group,
device_limited_routed_scaling_factor=
device_limited_routed_scaling_factor)
moe = tensorrt_llm.layers.MOE(moe_config=moe_config,
hidden_size=hidden_size,
ffn_hidden_size=ffn_hidden_size,
hidden_act=actfn,
bias=bias,
dtype=dtype,
quant_mode=quant_mode)
moe.router.weight.value = torch_to_numpy(self.router_weights.cpu())
if use_lora:
moe.max_low_rank = self.lora_rank
self.set_weight_layer(self.fc1_weights, moe.fc, quant_mode,
self.weight_scaling_factor_1)
self.set_weight_layer(self.fc2_weights, moe.proj, quant_mode,
self.weight_scaling_factor_2)
if quant_mode.has_fp8_qdq():
moe.fc.activation_scaling_factor.value = torch_to_numpy(
self.activation_scaling_factor_1)
moe.proj.activation_scaling_factor.value = torch_to_numpy(
self.activation_scaling_factor_2)
moe.fc.weights_scaling_factor.value = torch_to_numpy(
self.weight_scaling_factor_1)
moe.proj.weights_scaling_factor.value = torch_to_numpy(
self.weight_scaling_factor_2)
if bias:
moe.fc.bias.value = torch_to_numpy(self.fc1_bias.cpu())
moe.proj.bias.value = torch_to_numpy(self.fc2_bias.cpu())
if quant_mode.has_nvfp4():
network.plugin_config.gemm_plugin = 'nvfp4' if use_plugin else None
if custom_network:
if use_lora:
custom_network(network, trt_key, lora_params)
else:
custom_network(network, trt_key)
if not use_plugin:
quant_config = None
if quant_mode.has_fp8_qdq():
quant_config = QuantConfig(
quant_algo=QuantAlgo.FP8,
kv_cache_quant_algo=QuantAlgo.FP8)
elif quant_mode.has_nvfp4():
quant_config = QuantConfig(quant_algo=QuantAlgo.NVFP4)
moe = moe.to(MoeOOTB, quant_config=quant_config)
output = moe(trt_key, lora_layer_params=lora_params)
output.mark_output("output", dtype)
for k, v in moe.named_network_outputs():
v.mark_output(k, v.dtype)
# trt run
session = create_session(builder,
network,
precision=trt_dtype_to_str(dtype),
int8=weight_dtype == trt.int8,
quant_mode=quant_mode)
return session
def generate_reference(self, inputs, k, actfn, weight_dtype, quant_mode,
norm_mode, n_group, topk_group,
routed_scaling_factor):
# Always run the ref implementation at full precision TODO is this a good choice?
inputs = inputs.cuda().float()
inputs_merged = inputs.view(-1, inputs.shape[-1])
routing = torch.matmul(inputs_merged, self.router_weights.T.float())
assert routing.shape == (inputs_merged.shape[0],
self.router_weights.shape[0])
router_probs = torch.softmax(routing, 1, dtype=inputs.dtype)
assert routing.shape == router_probs.shape
if norm_mode not in [
MoeConfig.ExpertScaleNormalizationMode.DEVICE_LIMITED,
MoeConfig.ExpertScaleNormalizationMode.DEVICE_LIMITED_RENORM
]:
topk_values, topk_indices = torch.topk(router_probs, k)
else:
scores = router_probs
group_scores = (scores.view(scores.shape[0], n_group,
-1).max(dim=-1).values) # [n, n_group]
group_idx = torch.topk(group_scores,
k=topk_group,
dim=-1,
sorted=False)[1] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, n_group]
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
score_mask = (group_mask.unsqueeze(-1).expand(
group_mask.shape[0], n_group,
self.router_weights.shape[0] // n_group).reshape(
group_mask.shape[0], -1)) # [n, e]
scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
topk_values, topk_indices = torch.topk(scores,
k=k,
dim=-1,
sorted=False)
if k > 1 and norm_mode == MoeConfig.ExpertScaleNormalizationMode.DEVICE_LIMITED_RENORM:
denominator = topk_values.sum(dim=-1, keepdim=True) + 1e-20
topk_values = topk_values / denominator
else:
topk_values = topk_values * routed_scaling_factor
assert topk_indices.shape == (router_probs.shape[0], k)
max_act_2 = 0.0
results = torch.zeros_like(inputs_merged)
for i, (scales, experts) in enumerate(zip(topk_values, topk_indices)):
if norm_mode == MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE:
scales /= sum(scales)
input = inputs_merged[i, :]
for scale, expert in zip(scales, experts):
fc1_qd = quant_dequant(self.fc1_weights[expert], quant_mode)
if is_gated_activation(actfn):
fc1 = gated_matmul(input, fc1_qd.float(),
self.fc1_bias[expert].float(), actfn)
else:
fc1 = torch.matmul(
input,
fc1_qd.T.float()) + self.fc1_bias[expert].float()
fc1 = doact(fc1, actfn)
max_act_2 = max(max_act_2, torch.max(torch.abs(fc1)).item())
fc2_qd = quant_dequant(self.fc2_weights[expert], quant_mode)
final = torch.matmul(
fc1, fc2_qd.T.float()) + self.fc2_bias[expert].float()
assert final.shape == (inputs.shape[-1], )
results[i] += scale * final
return results.view(*inputs.shape), max_act_2