TensorRT-LLMs/tests/model/eagle/test_decode_draft_tokens_plugin.py
2024-12-24 15:58:43 +08:00

2410 lines
109 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import tensorrt as trt
import torch
from parameterized import parameterized
import tensorrt_llm
import tensorrt_llm.models.eagle
from tensorrt_llm import Tensor
from tensorrt_llm.models.eagle.model import TreeParams
sys.path.append(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir))
from utils.util import create_session, run_session, unittest_name_func
def logsoftmax(input_logits):
m = torch.nn.LogSoftmax(dim=-1)
return m(input_logits)
def generate_ref_eagle2(layerIdx, batch_size, input_logits,
dynamic_tree_max_topK, input_prev_paths,
input_prev_scores, input_draft_token_ids,
input_all_layers_scores,
input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor):
# input_logits: [batch_size * dynamic_tree_max_topK, vocab_size_padded]
# input_prev_paths: [batch_size, max_decoding_tokens, max_path_len]
# input_prev_scores: [batch_size, max_decoding_draft_tokens]
# input_draft_token_ids: [batch_size, max_decoding_draft_tokens]
# input_all_layers_scores: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
# input_all_layers_draft_token_ids: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
# input_all_layers_draft_token_ids_predecessor: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
ref_return_draft_token_ids = []
ref_return_current_scores = []
ref_return_output_all_layers_scores = []
ref_return_output_all_layers_draft_token_ids = []
ref_return_next_expand_indices = []
ref_return_output_all_layers_draft_token_ids_predecessor = []
for bix in range(batch_size):
logits = input_logits[
bix * dynamic_tree_max_topK:(bix + 1) *
dynamic_tree_max_topK] # shape [dynamic_tree_max_topK, vocab_size_padded]
# Reference the official implementation: https://github.com/SafeAILab/EAGLE/blob/main/eagle/model/cnets.py#L704
last_p = logsoftmax(logits)
top = torch.topk(last_p, dynamic_tree_max_topK, dim=-1)
topk_index, topk_p = top.indices, top.values # both shape [dynamic_tree_max_topK, dynamic_tree_max_topK]
# print(f"input_prev_scores[bix, :dynamic_tree_max_topK]: {input_prev_scores[bix, :dynamic_tree_max_topK]}")
prev_scores = input_prev_scores[
bix][:dynamic_tree_max_topK] # [dynamic_tree_max_topK]
cu_scores = topk_p + prev_scores[:,
None] # shape [dynamic_tree_max_topK, dynamic_tree_max_topK]
topk_cs = torch.topk(cu_scores.view(-1), dynamic_tree_max_topK, dim=-1)
topk_cs_index, topk_cs_p = topk_cs.indices, topk_cs.values # both shape [dynamic_tree_max_topK]
# We sort here to match our implement. We need to ensure that the expand tokenIds index are increase from left to right
topk_cs_index, topk_cs_sort_idx = torch.sort(topk_cs_index,
descending=False)
topk_cs_p = topk_cs_p[topk_cs_sort_idx]
next_scores = topk_cs_p
output_ids = topk_index.view(-1)[topk_cs_index]
# Concat with input
## draft token ids
# only slice meaningful values
cur_input_draft_token_ids = input_draft_token_ids[
bix][:layerIdx * dynamic_tree_max_topK]
ref_return_draft_token_ids.append(
torch.cat((cur_input_draft_token_ids, output_ids), dim=0))
nun_all_layers_scores = (
layerIdx - 1
) * dynamic_tree_max_topK * dynamic_tree_max_topK + dynamic_tree_max_topK
## all layers scores
prev_input_all_layers_scores = input_all_layers_scores[bix].view(
-1)[:nun_all_layers_scores]
ref_return_output_all_layers_scores.append(
torch.cat((prev_input_all_layers_scores, cu_scores.view(-1)),
dim=0))
## all layers draft tokens
prev_input_all_layers_draft_token_ids = input_all_layers_draft_token_ids[
bix].view(-1)[:nun_all_layers_scores]
ref_return_output_all_layers_draft_token_ids.append(
torch.cat(
(prev_input_all_layers_draft_token_ids, topk_index.view(-1)),
dim=0))
## current scores
ref_return_current_scores.append(next_scores)
## next expand indices
start_offset = (
layerIdx - 1
) * dynamic_tree_max_topK * dynamic_tree_max_topK + dynamic_tree_max_topK + 1
ref_return_next_expand_indices.append(topk_cs_index + start_offset)
## all layers draft tokenids predecessor
assert (len(topk_cs_index) == dynamic_tree_max_topK)
cur_layer_predecessor = (topk_cs_index +
start_offset) // dynamic_tree_max_topK
cur_layer_predecessor = cur_layer_predecessor.repeat_interleave(
dynamic_tree_max_topK)
prev_input_all_layers_draft_token_ids_predecessor = input_all_layers_draft_token_ids_predecessor[
bix].view(-1)[:nun_all_layers_scores]
ref_return_output_all_layers_draft_token_ids_predecessor.append(
torch.cat((prev_input_all_layers_draft_token_ids_predecessor,
cur_layer_predecessor),
dim=0))
return ref_return_draft_token_ids, ref_return_current_scores, ref_return_next_expand_indices, \
ref_return_output_all_layers_scores, ref_return_output_all_layers_draft_token_ids, ref_return_output_all_layers_draft_token_ids_predecessor
class TestEagleDecodeDraftTokensPlugin(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('warning')
def load_test_cases():
test_cases = []
################# Eagle-1 test cases ##########################
################# CASE 0 ##########################
# BS=1, topK sampling
# 1 input logits, from node "0"
# layer_id = 0
# logits_data_type = float32
batch_size = 1
layerId = 0
dynamic_tree_max_topK_t = -1
num_eagle_layers = 4
max_decoding_draft_tokens = 7
logits_data_type = torch.float32
logits = torch.tensor(
[
[-100, -100, 1, 2, -100, -100, 3, -100], # Top3 id = 6, 3, 2
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
num_last_token_indices = torch.tensor([1],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, 4, 6], [0, 1, 4, 7], [0, 2, -1, -1], [0, 3, 5, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len] -> [1, 8, 4]
input_draft_token_ids = torch.tensor(
[[-1, -1, -1, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([0], dtype=torch.int32,
device="cuda") # shape: [batch_size]
top_k_sampling = True
ref_return_draft_token_ids = torch.tensor(
[[6, 3, 2, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[3], dtype=torch.int32, device="cuda") # shape: [batch_size]
# Eagle-2 related inputs/outputs, useless for Eagle-1
use_dynamic_tree = torch.tensor(False, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_prev_scores = torch.full(
(batch_size, max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_current_expand_indices = torch.full(
(batch_size, max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_output_path = None
ref_return_current_scores = None
ref_return_next_expand_indices = None
ref_return_output_all_layers_scores = None
ref_return_output_all_layers_draft_token_ids = None
ref_return_output_all_layers_draft_token_ids_predecessor = None
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
################# CASE 1 ##########################
# BS=2, topK sampling
# 2 input logits, from req0 node "0" and req1 node "0"
# layer_id = 0
# logits_data_type = float32
batch_size = 2
layerId = 0
dynamic_tree_max_topK_t = -1
num_eagle_layers = 4
max_decoding_draft_tokens = 7
logits_data_type = torch.float32
logits = torch.tensor(
[
[-100, -100, 1, 2, -100, -100, -100, -100], # Top2 id = 3, 2
[-100, 3, -100, 2, -100, 1, -100, -100], # Top3 id = 1, 3, 5
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
num_last_token_indices = torch.tensor([2],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0, 0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, -1, -1], [0, 2, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1]],
[[0, 1, -1, -1], [0, 2, -1, -1], [0, 3, 4, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len] -> [2, 5, 4]
input_draft_token_ids = torch.tensor(
[[-1, -1, -1, -1], [-1, -1, -1, -1]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([0, 0],
dtype=torch.int32,
device="cuda") # shape: [batch_size]
top_k_sampling = True
ref_return_draft_token_ids = torch.tensor(
[[3, 2, -1, -1], [1, 3, 5, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[2, 3], dtype=torch.int32, device="cuda") # shape: [batch_size]
# Eagle-2 related inputs/outputs, useless for Eagle-1
use_dynamic_tree = torch.tensor(False, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_prev_scores = torch.full(
(batch_size, max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_current_expand_indices = torch.full(
(batch_size, max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_output_path = None
ref_return_current_scores = None
ref_return_next_expand_indices = None
ref_return_output_all_layers_scores = None
ref_return_output_all_layers_draft_token_ids = None
ref_return_output_all_layers_draft_token_ids_predecessor = None
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
################# CASE 2 ##########################
# BS=1, topK sampling
# 2 input loigts, from req0 node "1" and "3"
# layer_id = 1
# logits_data_type = float32
batch_size = 1
layerId = 1
dynamic_tree_max_topK_t = -1
num_eagle_layers = 4
max_decoding_draft_tokens = 7
logits_data_type = torch.float32
logits = torch.tensor(
[
[-100, -100, -100, 1, -100, -100, -100, -100], # Top1 id = 3
[-100, 1, -100, -100, -100, -100, -100, -100], # Top1 id = 1
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
num_last_token_indices = torch.tensor([2],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0, 0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, 4, 6], [0, 1, 4, 7], [0, 2, -1, -1], [0, 3, 5, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len] -> [1, 8, 4]
input_draft_token_ids = torch.tensor(
[[6, 3, 2, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([3], dtype=torch.int32,
device="cuda") # shape: [batch_size]
top_k_sampling = True
ref_return_draft_token_ids = torch.tensor(
[[6, 3, 2, 3, 1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[5], dtype=torch.int32, device="cuda") # shape: [batch_size]
# Eagle-2 related inputs/outputs, useless for Eagle-1
use_dynamic_tree = torch.tensor(False, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_prev_scores = torch.full(
(batch_size, max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_current_expand_indices = torch.full(
(batch_size, max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_output_path = None
ref_return_current_scores = None
ref_return_next_expand_indices = None
ref_return_output_all_layers_scores = None
ref_return_output_all_layers_draft_token_ids = None
ref_return_output_all_layers_draft_token_ids_predecessor = None
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
################# CASE 3 ##########################
# BS=2, topK sampling
# 1 input loigts, from req1, node "3"
# layer_id = 1
# logits_data_type = float32
batch_size = 1
layerId = 1
dynamic_tree_max_topK_t = -1
num_eagle_layers = 4
max_decoding_draft_tokens = 7
logits_data_type = torch.float32
logits = torch.tensor(
[
[-100, -100, -100, -100, -100, 1, -100, -100], # Top1 id = 5
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
num_last_token_indices = torch.tensor([1],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, -1, -1], [0, 2, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1]],
[[0, 1, -1, -1], [0, 2, -1, -1], [0, 3, 4, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len] -> [2, 5, 4]
input_draft_token_ids = torch.tensor(
[[2, 1, -1, -1], [1, 2, 3, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([2, 3],
dtype=torch.int32,
device="cuda") # shape: [batch_size]
top_k_sampling = True
ref_return_draft_token_ids = torch.tensor(
[[2, 1, -1, -1], [1, 2, 3, 5]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[2, 4], dtype=torch.int32, device="cuda") # shape: [batch_size]
# Eagle-2 related inputs/outputs, useless for Eagle-1
use_dynamic_tree = torch.tensor(False, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_prev_scores = torch.full(
(batch_size, max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_current_expand_indices = torch.full(
(batch_size, max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_output_path = None
ref_return_current_scores = None
ref_return_next_expand_indices = None
ref_return_output_all_layers_scores = None
ref_return_output_all_layers_draft_token_ids = None
ref_return_output_all_layers_draft_token_ids_predecessor = None
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
################# CASE 4 ##########################
# BS=2, topK sampling
# 2 input logits, from req0 node "4" and req1 node "4"
# layer_id = 2
# logits_data_type = float32
batch_size = 2
layerId = 2
dynamic_tree_max_topK_t = -1
num_eagle_layers = 4
max_decoding_draft_tokens = 7
logits_data_type = torch.float32
logits = torch.tensor(
[
[-100, -100, 1, 2, -100, -100, -100, -100], # Top2 id = 3, 2
[-100, -100, -100, -100, 1, 2, -100, -100], # Top2 id = 5, 4
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
num_last_token_indices = torch.tensor([2],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0, 0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, 4, 6], [0, 1, 4, 7], [0, 2, -1, -1], [0, 3, 5, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]],
[[0, 1, 4, 6], [0, 1, 4, 7], [0, 2, -1, -1], [0, 3, 5, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len] -> [2, 8, 4]
input_draft_token_ids = torch.tensor(
[[1, 2, 3, 4, 5, -1, -1], [1, 2, 3, 4, 5, -1, -1]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([5, 5],
dtype=torch.int32,
device="cuda") # shape: [batch_size]
top_k_sampling = True
ref_return_draft_token_ids = torch.tensor(
[[1, 2, 3, 4, 5, 3, 2], [1, 2, 3, 4, 5, 5, 4]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[7, 7], dtype=torch.int32, device="cuda") # shape: [batch_size]
# Eagle-2 related inputs/outputs, useless for Eagle-1
use_dynamic_tree = torch.tensor(False, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_prev_scores = torch.full(
(batch_size, max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_current_expand_indices = torch.full(
(batch_size, max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_output_path = None
ref_return_current_scores = None
ref_return_next_expand_indices = None
ref_return_output_all_layers_scores = None
ref_return_output_all_layers_draft_token_ids = None
ref_return_output_all_layers_draft_token_ids_predecessor = None
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
################# CASE 5 ##########################
# BS=1, topK sampling
# 1 input logits, from req0 node "0"
# layer_id = 0
# logits_data_type = float16
batch_size = 1
layerId = 0
dynamic_tree_max_topK_t = -1
num_eagle_layers = 4
max_decoding_draft_tokens = 7
logits_data_type = torch.float16
logits = torch.tensor(
[
[-100, -100, 1, 2, -100, -100, 3, -100], # Top3 id = 6, 3, 2
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
num_last_token_indices = torch.tensor([1],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, 4, 6], [0, 1, 4, 7], [0, 2, -1, -1], [0, 3, 5, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len] -> [1, 8, 4]
input_draft_token_ids = torch.tensor(
[[-1, -1, -1, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([0], dtype=torch.int32,
device="cuda") # shape: [batch_size]
top_k_sampling = True
ref_return_draft_token_ids = torch.tensor(
[[6, 3, 2, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[3], dtype=torch.int32, device="cuda") # shape: [batch_size]
# Eagle-2 related inputs/outputs, useless for Eagle-1
use_dynamic_tree = torch.tensor(False, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_prev_scores = torch.full(
(batch_size, max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_current_expand_indices = torch.full(
(batch_size, max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_output_path = None
ref_return_current_scores = None
ref_return_next_expand_indices = None
ref_return_output_all_layers_scores = None
ref_return_output_all_layers_draft_token_ids = None
ref_return_output_all_layers_draft_token_ids_predecessor = None
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
################# CASE 6 ##########################
# BS=1, topK sampling
# 5 input logits, only the 1st is valid, from req0 node "0"
# layer_id = 0
# logits_data_type = float16
batch_size = 1
layerId = 0
dynamic_tree_max_topK_t = -1
num_eagle_layers = 4
max_decoding_draft_tokens = 7
logits_data_type = torch.float16
logits = torch.tensor(
[
[-100, -100, 1, 2, -100, -100, 3, -100], # Top3 id = 6, 3, 2
[1, 2, -100, -100, -100, -100, -100, 3], # Top3 id = 7, 1, 0
[1, 2, -100, -100, -100, -100, -100, 3], # Top3 id = 7, 1, 0
[1, 2, -100, -100, -100, -100, -100, 3], # Top3 id = 7, 1, 0
[1, 2, -100, -100, -100, -100, -100, 3], # Top3 id = 7, 1, 0
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
num_last_token_indices = torch.tensor([1],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, 4, 6], [0, 1, 4, 7], [0, 2, -1, -1], [0, 3, 5, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len] -> [1, 8, 4]
input_draft_token_ids = torch.tensor(
[[-1, -1, -1, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([0], dtype=torch.int32,
device="cuda") # shape: [batch_size]
top_k_sampling = True
ref_return_draft_token_ids = torch.tensor(
[[6, 3, 2, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[3], dtype=torch.int32, device="cuda") # shape: [batch_size]
# Eagle-2 related inputs/outputs, useless for Eagle-1
use_dynamic_tree = torch.tensor(False, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_prev_scores = torch.full(
(batch_size, max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_current_expand_indices = torch.full(
(batch_size, max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_output_path = None
ref_return_current_scores = None
ref_return_next_expand_indices = None
ref_return_output_all_layers_scores = None
ref_return_output_all_layers_draft_token_ids = None
ref_return_output_all_layers_draft_token_ids_predecessor = None
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
# ################# Eagle-2 test cases ##########################
# ################# CASE 0: test the first layer ##########################
# BS=1, topK sampling
# 1 input logits, from node "0"
# layerId = 0
# logits_data_type = float32
logits_data_type = torch.float32
max_decoding_draft_tokens = 7
max_decoding_tokens = max_decoding_draft_tokens + 1
max_path_len = 4
num_eagle_layers = 3
batch_size = 1
dynamic_tree_max_topK_t = 3
top_k_sampling = True
layerId = 0
logits = torch.tensor(
[
[-100, -100, 1, 2, -100, -100, 3, -100], # Top3 id = 6, 3, 2
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
num_last_token_indices = torch.tensor([1],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.full(
(batch_size, max_decoding_tokens, max_path_len),
-1,
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len]
use_dynamic_tree = torch.tensor(True, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_draft_token_ids = torch.tensor(
[[-1, -1, -1, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([0], dtype=torch.int32,
device="cuda") # shape: [batch_size]
input_prev_scores = torch.full(
(batch_size, max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_current_expand_indices = torch.tensor(
[[0, -1, -1, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
ref_return_draft_token_ids = torch.tensor(
[[6, 3, 2, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[3], dtype=torch.int32, device="cuda") # shape: [batch_size]
ref_return_output_path = torch.tensor(
[[[0, 1, -1, -1], [0, 2, -1, -1], [0, 3, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len]
# For the layerIdx = 0
log_softmax = torch.nn.LogSoftmax(dim=-1)
pp = log_softmax(logits)
top_k_result = torch.topk(input=pp, k=dynamic_tree_max_topK_t, dim=-1)
ref_return_current_scores = top_k_result.values
ref_return_next_expand_indices = torch.tensor(
[[1, 2, 3, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_output_all_layers_scores = top_k_result.values
ref_return_output_all_layers_draft_token_ids = top_k_result.indices
ref_return_output_all_layers_draft_token_ids_predecessor = torch.tensor(
[[0, 0, 0]], dtype=torch.int32, device="cuda"
) # Actual shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
# Since we will save this value continuously
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
################# CASE 1: test the first layer ##########################
# BS=2, topK sampling
# In this test, in the second sampling, each node will has 1 leaf
# The input path is:
# [
# [0, 1, -1, -1],
# [0, 2, -1, -1],
# [0, 3, -1, -1]
# [-1, -1, -1, -1],
# ...
# ]
# The output path is:
# [
# [0, 1, 4, -1],
# [0, 2, 5, -1],
# [0, 3, 6, -1],
# [-1, -1, -1, -1],
# ...
# ]
# 2 input logits, from node "0"
# layerId = 0
# logits_data_type = float32
logits_data_type = torch.float32
max_decoding_draft_tokens = 7
max_decoding_tokens = max_decoding_draft_tokens + 1
max_path_len = 4
num_eagle_layers = 3
batch_size = 2
dynamic_tree_max_topK_t = 3
top_k_sampling = True
layerId = 0
logits = torch.tensor(
[
[-100, -100, 1, 2, -100, -100, 3, -100], # Top3 id = 6, 3, 2
[-100, 10, 1, -100, -100, 20, -100, -100], # Top3 id = 5, 1, 2
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
num_last_token_indices = torch.tensor([2],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0, 0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.full(
(batch_size, max_decoding_tokens, max_path_len),
-1,
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len]
use_dynamic_tree = torch.tensor(True, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_draft_token_ids = torch.tensor(
[[-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([0, 0],
dtype=torch.int32,
device="cuda") # shape: [batch_size]
input_prev_scores = torch.full(
(batch_size, max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_current_expand_indices = torch.tensor(
[[0, -1, -1, -1, -1, -1, -1], [0, -1, -1, -1, -1, -1, -1]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
ref_return_draft_token_ids = torch.tensor(
[[6, 3, 2, -1, -1, -1, -1], [5, 1, 2, -1, -1, -1, -1]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[3, 3], dtype=torch.int32, device="cuda") # shape: [batch_size]
ref_return_output_path = torch.tensor(
[[[0, 1, -1, -1], [0, 2, -1, -1], [0, 3, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]],
[[0, 1, -1, -1], [0, 2, -1, -1], [0, 3, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len]
# For the layerIdx = 0
log_softmax = torch.nn.LogSoftmax(dim=-1)
pp = log_softmax(logits)
top_k_result = torch.topk(input=pp, k=dynamic_tree_max_topK_t, dim=-1)
ref_return_current_scores = top_k_result.values
ref_return_next_expand_indices = torch.tensor(
[[1, 2, 3, -1, -1, -1, -1], [1, 2, 3, -1, -1, -1, -1]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_output_all_layers_scores = top_k_result.values
ref_return_output_all_layers_draft_token_ids = top_k_result.indices
ref_return_output_all_layers_draft_token_ids_predecessor = torch.tensor(
[[0, 0, 0], [0, 0, 0]], dtype=torch.int32, device="cuda"
) # Actual shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
# Since we will save this value continuously
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
################# CASE 2: test the internal layer ##########################
# BS=1, topK sampling
# In this case, new selected draft tokens comes from node_2, node_2, and node_3
# 3 input logits, from node node_1, node_2 and node_3, respectively
# layerId = 1
# logits_data_type = float32
logits_data_type = torch.float32
max_decoding_draft_tokens = 7
max_decoding_tokens = max_decoding_draft_tokens + 1
max_path_len = 4
num_eagle_layers = 3
batch_size = 1
dynamic_tree_max_topK_t = 3
top_k_sampling = True
layerId = 1
logits = torch.tensor(
[
[-10, 14, 13, -10, -10, -10, -10, -10, 15, -10, -10, -10
], # Top3 id = 8, 1, 2
[-10, -10, 10, 11, -10, -10, 12, -10, -10, -10, -10, -10
], # Top3 id = 6, 3, 2
[-10, 16, -10, -10, 17, -10, -10, 18, -10, -10, -10, -10
], # Top3 id = 7, 4, 1
],
dtype=logits_data_type,
device="cuda"
) # shape: [batch_size * dynamic_tree_max_topK, vocab_size_padded]
num_last_token_indices = torch.tensor([3],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, -1, -1], [0, 2, -1, -1], [0, 3, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len]
use_dynamic_tree = torch.tensor(True, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_draft_token_ids = torch.tensor(
[[6, 3, 2, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([3], dtype=torch.int32,
device="cuda") # shape: [batch_size]
input_prev_scores = torch.tensor(
[[1.1, 5.2, 3.3, -1, -1, -1, -1]],
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_current_expand_indices = torch.tensor(
[[1, 2, 3, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.tensor(
[
# batchIdx = 0
[
[1.1, 5.2, 3.3] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t), # layerIdx = 0
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 1
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 2
]
],
dtype=torch.float32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.tensor(
[
# batchIdx = 0
[
[6, 3, 2] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t), # layerIdx = 0
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 1
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 2
]
],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.tensor(
[
# batchIdx = 0
[
[0, 0, 0] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t), # layerIdx = 0
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 1
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 2
]
],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
ref_return_output_path = torch.tensor(
[[[0, 1, -1, -1], [0, 2, 4, -1], [0, 2, 5, -1], [0, 3, 6, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda")
ref_return_draft_token_ids, ref_return_current_scores, ref_return_next_expand_indices, \
ref_return_output_all_layers_scores, ref_return_output_all_layers_draft_token_ids, ref_return_output_all_layers_draft_token_ids_predecessor \
= generate_ref_eagle2(
layerIdx = layerId,
batch_size = batch_size,
input_logits = logits,
dynamic_tree_max_topK = dynamic_tree_max_topK_t,
input_prev_paths = paths,
input_prev_scores = input_prev_scores,
input_draft_token_ids = input_draft_token_ids,
input_all_layers_scores = input_all_layers_scores,
input_all_layers_draft_token_ids = input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor = input_all_layers_draft_token_ids_predecessor
)
ref_return_draft_len = torch.tensor(
[6], dtype=torch.int32, device="cuda") # shape: [batch_size]
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
################# CASE 3: test the internal layer ##########################
# BS=2, topK sampling
# For bs=0, the new expand nodes are from node_1, node_2, and node_3, respectively
# For bs=1, the new expand nodes are all from node_1
# 6 input logits, 3 from bs0, and 3 from bs1. And for each request, these 3 logits are from node_1, node_2 and node_3, respectively
# layerId = 1
# logits_data_type = float32
logits_data_type = torch.float32
max_decoding_draft_tokens = 7
max_decoding_tokens = max_decoding_draft_tokens + 1
max_path_len = 4
num_eagle_layers = 3
batch_size = 2
dynamic_tree_max_topK_t = 3
top_k_sampling = True
layerId = 1
logits = torch.tensor(
[
[-10, 14, 13, -10, -10, -10, -10, -10, 15, -10, -10, -10
], # Top3 id = 8, 1, 2
[-10, -10, 10, 11, -10, -10, 12, -10, -10, -10, -10, -10
], # Top3 id = 6, 3, 2
[-10, 16, -10, -10, 17, -10, -10, 18, -10, -10, -10, -10
], # Top3 id = 7, 4, 1
[-10, 26, -10, 27, 28, -10, -10, -10, -10, -10, -10, -10
], # Top3 id = 4, 3, 1
[-10, 24, 23, -10, -10, 25, -10, -10, -10, -10, -10, -10
], # Top3 id = 5, 1, 2
[-10, -10, 20, 21, -10, -10, -10, -10, -10, -10, 22, -10
], # Top3 id = 10, 3, 2
],
dtype=logits_data_type,
device="cuda"
) # shape: [batch_size * dynamic_tree_max_topK, vocab_size_padded]
num_last_token_indices = torch.tensor([6],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0, 0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, -1, -1], [0, 2, -1, -1], [0, 3, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]],
[[0, 1, -1, -1], [0, 2, -1, -1], [0, 3, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len]
use_dynamic_tree = torch.tensor(True, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_draft_token_ids = torch.tensor(
[[6, 3, 2, -1, -1, -1, -1], [5, 1, 2, -1, -1, -1, -1]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([3, 3],
dtype=torch.int32,
device="cuda") # shape: [batch_size]
input_prev_scores = torch.tensor(
[[1.0, 1.0, 1.0, -1, -1, -1, -1], [14.4, 5.5, 6.6, -1, -1, -1, -1]],
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_current_expand_indices = torch.tensor(
[[1, 2, 3, -1, -1, -1, -1], [1, 2, 3, -1, -1, -1, -1]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.tensor(
[
# batchIdx = 0
[
[1.0, 1.0, 1.0] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t), # layerIdx = 0
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 1
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 2
],
# batchIdx = 1
[
[14.4, 5.5, 6.6] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t), # layerIdx = 0
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 1
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 2
]
],
dtype=torch.float32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.tensor(
[
# batchIdx = 0
[
[6, 3, 2] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t), # layerIdx = 0
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 1
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 2
],
# batchIdx = 1
[
[5, 1, 2] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t), # layerIdx = 0
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 1
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 2
]
],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.tensor(
[
# batchIdx = 0
[
[0, 0, 0] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t), # layerIdx = 0
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 1
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 2
],
# batchIdx = 1
[
[0, 0, 0] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t), # layerIdx = 0
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 1
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 2
]
],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
ref_return_output_path = torch.tensor(
[
[
[0, 1, 4, -1], [0, 2, 5, -1], [0, 3, 6, -1],
[-1, -1, -1, -1
], [-1, -1, -1, -1
], [-1, -1, -1, -1
], [-1, -1, -1, -1
], [-1, -1, -1, -1]
], # the new expand nodes are from node_1, node_2, and node_3, respectively
[[0, 1, 4, -1], [0, 1, 5, -1], [0, 1, 6, -1], [0, 2, -1, -1],
[0, 3, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]
], # the new expand nodes are all from node_1
dtype=torch.int32,
device="cuda")
ref_return_draft_token_ids, ref_return_current_scores, ref_return_next_expand_indices, \
ref_return_output_all_layers_scores, ref_return_output_all_layers_draft_token_ids, ref_return_output_all_layers_draft_token_ids_predecessor \
= generate_ref_eagle2(
layerIdx = layerId,
batch_size = batch_size,
input_logits = logits,
dynamic_tree_max_topK = dynamic_tree_max_topK_t,
input_prev_paths = paths,
input_prev_scores = input_prev_scores,
input_draft_token_ids = input_draft_token_ids,
input_all_layers_scores = input_all_layers_scores,
input_all_layers_draft_token_ids = input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor = input_all_layers_draft_token_ids_predecessor
)
ref_return_draft_len = torch.tensor(
[6, 6], dtype=torch.int32, device="cuda") # shape: [batch_size]
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
################# CASE 4: test the internal layer ##########################
# In this test, in the second sampling, node 1 will has 2 leaves, and node 3 will has 1 leaf
# The input path is:
# [
# [0, 1, -1, -1],
# [0, 2, -1, -1],
# [0, 3, -1, -1]
# [-1, -1, -1, -1],
# ...
# ]
# The output path is:
# [
# [0, 1, 4, -1],
# [0, 1, 5, -1],
# [0, 2, -1, -1],
# [0, 3, 6, -1],
# [-1, -1, -1, -1],
# ...
# ]
# BS=1, topK sampling
# 3 input logits, from node_1, node_2, and node_3, respectively.
# layerId = 1
# logits_data_type = float32
logits_data_type = torch.float32
max_decoding_draft_tokens = 7
max_decoding_tokens = max_decoding_draft_tokens + 1
max_path_len = 4
num_eagle_layers = 3
batch_size = 1
dynamic_tree_max_topK_t = 3
top_k_sampling = True
layerId = 1
logits = torch.tensor(
[
[-1, 11.9, 7, -1, -1, -1, -1, -1, 12, -1, -1, -1
], # Top3 id = 8, 1, 2
[-1, -1, 19.4, 19.5, -1, -1, 20, -1, -1, -1, -1, -1
], # Top3 id = 6, 3, 2
[-1, 3, -1, -1, 4, -1, -1, 5, -1, -1, -1, -1
], # Top3 id = 7, 4, 1
],
dtype=logits_data_type,
device="cuda"
) # shape: [batch_size * dynamic_tree_max_topK, vocab_size_padded]
num_last_token_indices = torch.tensor([3],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, -1, -1], [0, 2, -1, -1], [0, 3, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len]
use_dynamic_tree = torch.tensor(True, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_draft_token_ids = torch.tensor(
[[6, 3, 2, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([3], dtype=torch.int32,
device="cuda") # shape: [batch_size]
input_prev_scores = torch.tensor(
[[1.0, 1.0, 1.0, -1, -1, -1, -1]],
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_current_expand_indices = torch.tensor(
[[1, 2, 3, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.tensor(
[
# batchIdx = 0
[
[1.0, 1.0, 1.0] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t), # layerIdx = 0
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 1
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 2
]
],
dtype=torch.float32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.tensor(
[
# batchIdx = 0
[
[6, 3, 2] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t), # layerIdx = 0
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 1
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 2
]
],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.tensor(
[
# batchIdx = 0
[
[0, 0, 0] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t), # layerIdx = 0
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 1
[-1] * (max_decoding_draft_tokens *
max_decoding_draft_tokens), # layerIdx = 2
]
],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
ref_return_output_path = torch.tensor(
[[[0, 1, 4, -1], [0, 1, 5, -1], [0, 2, -1, -1], [0, 3, 6, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda")
ref_return_draft_token_ids, ref_return_current_scores, ref_return_next_expand_indices, \
ref_return_output_all_layers_scores, ref_return_output_all_layers_draft_token_ids, ref_return_output_all_layers_draft_token_ids_predecessor \
= generate_ref_eagle2(
layerIdx = layerId,
batch_size = batch_size,
input_logits = logits,
dynamic_tree_max_topK = dynamic_tree_max_topK_t,
input_prev_paths = paths,
input_prev_scores = input_prev_scores,
input_draft_token_ids = input_draft_token_ids,
input_all_layers_scores = input_all_layers_scores,
input_all_layers_draft_token_ids = input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor = input_all_layers_draft_token_ids_predecessor
)
ref_return_draft_len = torch.tensor(
[6], dtype=torch.int32, device="cuda") # shape: [batch_size]
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
################# CASE 5: test the last layer ##########################
# BS=1, topK sampling
# 3 input logits
# layerId = 2, which is the last layer
# logits_data_type = float32
# The input paths
# [
# [0, 1, 4, -1],
# [0, 1, 5, -1],
# [0, 1, 6, -1],
# [0, 2, -1, -1],
# [0, 3, -1, -1],
# [-1, -1, -1, -1]
# ]
# Three input logits are from node_4, node_5, and node_6
# We set the node_1 to node_6 have large scores, so they will be selected in the final tree
logits_data_type = torch.float32
max_decoding_draft_tokens = 7
max_decoding_tokens = max_decoding_draft_tokens + 1
max_path_len = 4
num_eagle_layers = 3
batch_size = 1
dynamic_tree_max_topK_t = 3
top_k_sampling = True
layerId = 2
logits = torch.tensor(
[
[-1, 11.9, 7, -1, -1, -1, -1, -1, 12, -1, -1, -1
], # Top3 id = 8, 1, 2
[-1, -1, 19.4, 19.5, -1, -1, 20, -1, -1, -1, -1, -1
], # Top3 id = 6, 3, 2
[-1, 3, -1, -1, 4, -1, -1, 5, -1, -1, -1, -1
], # Top3 id = 7, 4, 1
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
num_last_token_indices = torch.tensor([3],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[
[0, 1, 4, -1],
[0, 1, 5, -1],
[0, 1, 6, -1],
[0, 2, -1, -1],
[0, 3, -1, -1],
[-1, -1, -1, -1],
[-1, -1, -1, -1],
[-1, -1, -1, -1],
]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len]
use_dynamic_tree = torch.tensor(True, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_draft_token_ids = torch.tensor(
[[1, 2, 3, 4, 5, 6, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([6], dtype=torch.int32,
device="cuda") # shape: [batch_size]
input_prev_scores = torch.tensor(
[[10, 10, 10, -1, -1, -1, -1]], dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_current_expand_indices = torch.tensor(
[[4, 5, 6, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.tensor(
[[
[10, 10, 10, 10, 10, 10, -10, -10, -10, -10, -10, -10] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t -
dynamic_tree_max_topK_t * dynamic_tree_max_topK_t),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
]],
dtype=torch.float32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.tensor(
[[
[1, 2, 3, 4, 5, 6, 11, 11, 11, 11, 11, 11] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t -
dynamic_tree_max_topK_t * dynamic_tree_max_topK_t),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.tensor(
[[
[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t -
dynamic_tree_max_topK_t * dynamic_tree_max_topK_t),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
ref_return_draft_token_ids = torch.tensor(
[[1, 2, 3, 4, 5, 6, 7]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[7], dtype=torch.int32, device="cuda") # shape: [batch_size]
ref_return_output_path = torch.tensor(
[[[0, 1, 4, -1], [0, 1, 5, -1], [0, 1, 6, 7], [0, 2, -1, -1],
[0, 3, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len]
# For the last layer, we do not need to check these outputs
ref_return_current_scores = None
ref_return_next_expand_indices = None
ref_return_output_all_layers_scores = None
ref_return_output_all_layers_draft_token_ids = None
ref_return_output_all_layers_draft_token_ids_predecessor = None
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
################# CASE 6: test the last layer ##########################
# batch_size = 2
logits_data_type = torch.float32
max_decoding_draft_tokens = 7
max_decoding_tokens = max_decoding_draft_tokens + 1
max_path_len = 4
num_eagle_layers = 3
batch_size = 2
dynamic_tree_max_topK_t = 3
top_k_sampling = True
layerId = 2
logits = torch.tensor(
[
[-1, 11.9, 7, -1, -1, -1, -1, -1, 12, -1, -1, -1
], # Top3 id = 8, 1, 2
[-1, -1, 19.4, 19.5, -1, -1, 20, -1, -1, -1, -1, -1
], # Top3 id = 6, 3, 2
[-1, 3, -1, -1, 4, -1, -1, 5, -1, -1, -1, -1
], # Top3 id = 7, 4, 1
[-1, 11.9, -1, 7, 12, -1, -1, -1, -1, -1, -1, -1
], # Top3 id = 4, 3, 1
[-1, 19.5, 19.4, -1, -1, 20, -1, -1, -1, -1, -1, -1
], # Top3 id = 5, 1, 2
[-1, -1, 3, 4, -1, -1, -1, -1, -1, -1, 5, -1
], # Top3 id = 10, 3, 2
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
num_last_token_indices = torch.tensor([6],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0, 0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[
[0, 1, 4, -1],
[0, 1, 5, -1],
[0, 1, 6, -1],
[0, 2, -1, -1],
[0, 3, -1, -1],
[-1, -1, -1, -1],
[-1, -1, -1, -1],
[-1, -1, -1, -1],
],
[
[0, 1, 4, -1],
[0, 1, 5, -1],
[0, 2, 6, -1],
[0, 3, -1, -1],
[-1, -1, -1, -1],
[-1, -1, -1, -1],
[-1, -1, -1, -1],
[-1, -1, -1, -1],
]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len]
use_dynamic_tree = torch.tensor(True, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_draft_token_ids = torch.tensor(
[[1, 2, 3, 4, 5, 6, -1], [6, 5, 4, 3, 2, 1, -1]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([6, 6],
dtype=torch.int32,
device="cuda") # shape: [batch_size]
input_prev_scores = torch.tensor(
[[10, 10, 10, -1, -1, -1, -1], [1, 1, 1, -1, -1, -1, -1]],
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
# The index will take all the draft tokens into consideration, even they are not selected.
# But they will be sampled at the last layer.
# As to the bi=0, the index '8' is actually correspond to the '6' in the input paths.
input_current_expand_indices = torch.tensor(
[[4, 5, 6, -1, -1, -1, -1], [4, 5, 8, -1, -1, -1, -1]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.tensor(
[[
[10, 10, 10, 10, 10, 10, -10, -10, -10, -10, -10, -10] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t -
dynamic_tree_max_topK_t * dynamic_tree_max_topK_t),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
],
[
[16, 15, 14, 13, 12, -10, -10, 11, -10, -10, -10, -10] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t -
dynamic_tree_max_topK_t * dynamic_tree_max_topK_t),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
]],
dtype=torch.float32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.tensor(
[[
[1, 2, 3, 4, 5, 6, 11, 11, 11, 11, 11, 11] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t -
dynamic_tree_max_topK_t * dynamic_tree_max_topK_t),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
],
[
[6, 5, 4, 3, 2, 11, 11, 1, 11, 11, 11, 11] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t -
dynamic_tree_max_topK_t * dynamic_tree_max_topK_t),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.tensor(
[[
[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t -
dynamic_tree_max_topK_t * dynamic_tree_max_topK_t),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
],
[
[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3] + [-1] *
(max_decoding_draft_tokens * max_decoding_draft_tokens -
dynamic_tree_max_topK_t -
dynamic_tree_max_topK_t * dynamic_tree_max_topK_t),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
[-1] * (max_decoding_draft_tokens * max_decoding_draft_tokens),
]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
ref_return_draft_token_ids = torch.tensor(
[[1, 2, 3, 4, 5, 6, 7], [6, 5, 4, 3, 2, 1, 10]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[7, 7], dtype=torch.int32, device="cuda") # shape: [batch_size]
ref_return_output_path = torch.tensor(
[
[[0, 1, 4, -1], [0, 1, 5, -1], [0, 1, 6, 7], [0, 2, -1, -1],
[0, 3, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]],
[[0, 1, 4, -1], [0, 1, 5, -1], [0, 2, 6, 7], [0, 3, -1, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]],
],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len]
# For the last layer, we do not need to check these outputs
ref_return_current_scores = None
ref_return_next_expand_indices = None
ref_return_output_all_layers_scores = None
ref_return_output_all_layers_draft_token_ids = None
ref_return_output_all_layers_draft_token_ids_predecessor = None
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
################# CASE 7: test the fist, but also the last layer ##########################
# BS=1, topK sampling
# 1 input logits
# layerId = 0, which is the first layer, but also the last layer
# logits_data_type = float32
logits_data_type = torch.float32
max_decoding_draft_tokens = 4
max_decoding_tokens = max_decoding_draft_tokens + 1
max_path_len = 2
num_eagle_layers = 1
batch_size = 1
dynamic_tree_max_topK_t = 4
top_k_sampling = True
layerId = 0
logits = torch.tensor(
[
[-1, -1, 2, -1, -1, 5, -1, 4, 3, -1, -1, -1
], # Top4 id = 5, 7, 8, 2
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
num_last_token_indices = torch.tensor([1],
dtype=torch.int32,
device="cuda") # shape: [1]
rand_sample = torch.tensor([0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[
[-1, -1, -1, -1],
[-1, -1, -1, -1],
[-1, -1, -1, -1],
[-1, -1, -1, -1],
[-1, -1, -1, -1],
]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len]
use_dynamic_tree = torch.tensor(True, dtype=torch.bool,
device="cpu") # shape: [1]
dynamic_tree_max_topK = torch.tensor(dynamic_tree_max_topK_t,
dtype=torch.int32,
device="cpu") # shape: [1]
input_draft_token_ids = torch.tensor(
[[-1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([0], dtype=torch.int32,
device="cuda") # shape: [batch_size]
input_prev_scores = torch.full(
(batch_size, max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_current_expand_indices = torch.tensor(
[[0, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_all_layers_scores = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
float('-inf'),
dtype=torch.float32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
input_all_layers_draft_token_ids_predecessor = torch.full(
(batch_size, num_eagle_layers,
max_decoding_draft_tokens * max_decoding_draft_tokens),
-1,
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]
ref_return_draft_token_ids = torch.tensor(
[[5, 7, 8, 2]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[4], dtype=torch.int32, device="cuda") # shape: [batch_size]
ref_return_output_path = torch.tensor(
[[[0, 1, -1, -1], [0, 2, -1, -1], [0, 3, -1, -1], [0, 4, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len]
# For the last layer, we do not need to check these outputs
ref_return_current_scores = None
ref_return_next_expand_indices = None
ref_return_output_all_layers_scores = None
ref_return_output_all_layers_draft_token_ids = None
ref_return_output_all_layers_draft_token_ids_predecessor = None
test_cases += [[
logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor
]]
return test_cases
@parameterized.expand(load_test_cases, name_func=unittest_name_func)
def test_sample_draft_tokens_plugin(
self, logits, num_last_token_indices, rand_sample, paths,
use_dynamic_tree, dynamic_tree_max_topK, input_draft_token_ids,
input_draft_lens, input_prev_scores, input_current_expand_indices,
input_all_layers_scores, input_all_layers_draft_token_ids,
input_all_layers_draft_token_ids_predecessor, top_k_sampling,
num_eagle_layers, layerId, ref_return_draft_token_ids,
ref_return_draft_len, ref_return_output_path,
ref_return_current_scores, ref_return_next_expand_indices,
ref_return_output_all_layers_scores,
ref_return_output_all_layers_draft_token_ids,
ref_return_output_all_layers_draft_token_ids_predecessor):
# test data
torch.get_default_device()
torch.set_default_device("cuda")
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
logits_t = Tensor(name='logits',
dtype=tensorrt_llm.torch_dtype_to_trt(
logits.dtype),
shape=logits.shape)
num_last_token_indices_t = Tensor(
name='num_last_token_indices',
dtype=tensorrt_llm.torch_dtype_to_trt(
num_last_token_indices.dtype),
shape=num_last_token_indices.shape)
rand_sample_t = Tensor(name='rand_sample',
dtype=trt.float32,
shape=rand_sample.shape)
paths_t = Tensor(name='paths', dtype=trt.int32, shape=paths.shape)
use_dynamic_tree_t = Tensor(name='use_dynamic_tree',
dtype=trt.bool,
shape=use_dynamic_tree.shape)
dynamic_tree_max_topK_t = Tensor(name='dynamic_tree_max_topK',
dtype=trt.int32,
shape=dynamic_tree_max_topK.shape)
input_draft_token_ids_t = Tensor(name='input_draft_token_ids',
dtype=trt.int32,
shape=input_draft_token_ids.shape)
input_draft_lens_t = Tensor(name='input_draft_lens',
dtype=trt.int32,
shape=input_draft_lens.shape)
input_prev_scores_t = Tensor(name='input_prev_scores',
dtype=trt.float32,
shape=input_prev_scores.shape)
input_current_expand_indices_t = Tensor(
name='input_current_expand_indices',
dtype=trt.int32,
shape=input_current_expand_indices.shape)
input_all_layers_scores_t = Tensor(
name='input_all_layers_scores',
dtype=tensorrt_llm.torch_dtype_to_trt(
input_all_layers_scores.dtype),
shape=input_all_layers_scores.shape)
input_all_layers_draft_token_ids_t = Tensor(
name='input_all_layers_draft_token_ids',
dtype=trt.int32,
shape=input_all_layers_draft_token_ids.shape)
input_all_layers_draft_token_ids_predecessor_t = Tensor(
name='input_all_layers_draft_token_ids_predecessor',
dtype=trt.int32,
shape=input_all_layers_draft_token_ids_predecessor.shape)
output = tensorrt_llm.models.eagle.model.eagle_draft_decoder_plugin(
layer_idx=layerId,
num_eagle_layers=num_eagle_layers,
top_k_sampling=top_k_sampling,
logits=logits_t,
num_last_token_indices=num_last_token_indices_t,
rand_sample=rand_sample_t,
tree_params=TreeParams(
paths=paths_t,
use_dynamic_tree=use_dynamic_tree_t,
dynamic_tree_max_topK=dynamic_tree_max_topK_t),
input_draft_token_ids=input_draft_token_ids_t,
input_draft_lens=input_draft_lens_t,
input_prev_scores=input_prev_scores_t,
input_current_expand_indices=input_current_expand_indices_t,
input_all_layers_scores=input_all_layers_scores_t,
input_all_layers_draft_token_ids=
input_all_layers_draft_token_ids_t,
input_all_layers_draft_token_ids_predecessor=
input_all_layers_draft_token_ids_predecessor_t)
output_draft_token_ids, output_draft_lens, output_paths, output_current_scores, output_next_expand_indices, \
output_all_layers_scores, output_all_layers_draft_token_ids, output_all_layers_draft_token_ids_predecessor = output
output_draft_token_ids.mark_output('output_draft_token_ids')
output_draft_lens.mark_output('output_draft_lens')
output_paths.mark_output('output_paths')
output_current_scores.mark_output('output_current_scores')
output_next_expand_indices.mark_output('output_next_expand_indices')
output_all_layers_scores.mark_output('output_all_layers_scores')
output_all_layers_draft_token_ids.mark_output(
'output_all_layers_draft_token_ids')
output_all_layers_draft_token_ids_predecessor.mark_output(
'output_all_layers_draft_token_ids_predecessor')
# trt run
session = create_session(builder, network, precision='float32')
inputs = {
"logits":
logits,
"num_last_token_indices":
num_last_token_indices,
"rand_sample":
rand_sample,
"paths":
paths,
"use_dynamic_tree":
use_dynamic_tree,
"dynamic_tree_max_topK":
dynamic_tree_max_topK,
"input_draft_token_ids":
input_draft_token_ids,
"input_draft_lens":
input_draft_lens,
"input_prev_scores":
input_prev_scores,
"input_current_expand_indices":
input_current_expand_indices,
"input_all_layers_scores":
input_all_layers_scores,
"input_all_layers_draft_token_ids":
input_all_layers_draft_token_ids,
"input_all_layers_draft_token_ids_predecessor":
input_all_layers_draft_token_ids_predecessor
}
outputs = run_session(session, inputs)
output_draft_token_ids = outputs['output_draft_token_ids']
output_draft_lens = outputs['output_draft_lens']
output_paths = outputs['output_paths']
output_current_scores = outputs['output_current_scores']
output_next_expand_indices = outputs['output_next_expand_indices']
output_all_layers_scores = outputs['output_all_layers_scores']
output_all_layers_draft_token_ids = outputs[
'output_all_layers_draft_token_ids']
output_all_layers_draft_token_ids_predecessor = outputs[
'output_all_layers_draft_token_ids_predecessor']
# Check output
batch_size = paths.shape[0]
for bix in range(batch_size):
# 1) Check output length
self.assertEqual(ref_return_draft_len[bix], output_draft_lens[bix])
# 2) Check output token
for jj in range(output_draft_lens[bix]):
self.assertEqual(ref_return_draft_token_ids[bix][jj],
output_draft_token_ids[bix][jj])
# For eagle-2
if use_dynamic_tree:
# 3) Check output path
# max_decoding_tokens = ref_return_output_path.shape[1]
max_decoding_tokens = output_paths.shape[1]
max_decoding_tokens - 1
# max_path_len = ref_return_output_path.shape[2]
max_path_len = output_paths.shape[2]
num_all_layers_draft_tokens = (
layerId - 1
) * dynamic_tree_max_topK * dynamic_tree_max_topK + dynamic_tree_max_topK
for jj in range(max_decoding_tokens):
for kk in range(max_path_len):
self.assertEqual(ref_return_output_path[bix][jj][kk],
output_paths[bix][jj][kk])
if layerId != num_eagle_layers - 1:
# Only check these output for internal layers
# 4) Check output current scores, check shape: [batch_size, dynamic_tree_max_topK]
for jj in range(dynamic_tree_max_topK):
self.assertAlmostEqual(
ref_return_current_scores[bix][jj],
output_current_scores[bix][jj],
delta=0.1)
# 5) Check output next expand indices, check shape: [batch_size, dynamic_tree_max_topK]
for jj in range(dynamic_tree_max_topK):
self.assertEqual(
ref_return_next_expand_indices[bix][jj],
output_next_expand_indices[bix][jj])
# 6) Check output all layers scores
cur_output_all_layers_scores = output_all_layers_scores[
bix].view(-1)
for jj in range(num_all_layers_draft_tokens):
self.assertAlmostEqual(
ref_return_output_all_layers_scores[bix][jj],
cur_output_all_layers_scores[jj],
delta=0.1)
# 7) Check output all layers draft token ids
cur_output_all_layers_draft_token_ids = output_all_layers_draft_token_ids[
bix].view(-1)
for jj in range(num_all_layers_draft_tokens):
self.assertEqual(
ref_return_output_all_layers_draft_token_ids[bix]
[jj], cur_output_all_layers_draft_token_ids[jj])
# 8) Check output all layers draft token ids predecessor
cur_output_all_layers_draft_token_ids_predecessor = output_all_layers_draft_token_ids_predecessor[
bix].view(-1)
for jj in range(num_all_layers_draft_tokens):
self.assertEqual(
ref_return_output_all_layers_draft_token_ids_predecessor[
bix][jj],
cur_output_all_layers_draft_token_ids_predecessor[
jj])
if __name__ == "__main__":
unittest.main()