TensorRT-LLMs/tests/model/redrafter/test_beams2tree.py
2024-09-30 16:20:23 +08:00

206 lines
8.1 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import torch
import tensorrt_llm
import tensorrt_llm.models.redrafter
import tensorrt_llm.models.redrafter.redrafter_helper
from tensorrt_llm import Tensor
# from tensorrt_llm.tools.onnx_utils import to_onnx
sys.path.append(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir))
from utils.util import create_session, run_session
T, F = True, False
class TestReDrafter(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('warning')
def test_beams2tree(self):
# test data
bs = 2
nb = 3
bl = 4
old_device = torch.get_default_device()
torch.set_default_device("cuda")
beams = torch.tensor(
[ # Assuming a batch of two sequences, each has 3 beams of 4 tokens.
[
[91, 92, 93, 95],
[91, 92, 94, 96],
[91, 92, 93, 97],
],
[
[93, 94, 95, 92],
[93, 95, 96, 93],
[93, 94, 97, 96],
],
],
dtype=torch.int32,
)
position_ids_base = torch.tensor([3, 10], dtype=torch.int32)
assert beams.shape == (bs, nb, bl)
assert position_ids_base.shape == (bs, )
# ref outputs
ref_active_flat_tokens = torch.tensor(
[91, 92, 93, 95, 94, 96, 97, 93, 94, 95, 92, 95, 96, 93, 97, 96],
dtype=torch.int32)
ref_active_token_indices = torch.tensor(
[[0, 1, 2, 3, 6, 7, 11, 0, 1], [0, 1, 2, 3, 5, 6, 7, 10, 11]],
dtype=torch.int32)
ref_draft_token_indices = torch.tensor(
[
[
[0, 1, 2, 3],
[0, 1, 4, 5],
[0, 1, 2, 6],
],
[
[0, 1, 2, 3],
[0, 4, 5, 6],
[0, 1, 7, 8],
],
],
dtype=torch.int32,
)
ref_total_lengths = torch.tensor([7, 9], dtype=torch.int32)
ref_max_len = ref_total_lengths.max().int()
ref_total_gen_len = ref_total_lengths.sum().int()
ref_position_offsets = ref_active_token_indices % bl
position_ids = ref_position_offsets + position_ids_base.unsqueeze(1)
ref_packed_position_ids = torch.concat(
[position_ids[b, :ref_total_lengths[b]] for b in range(bs)]).int()
ref_mask = torch.tensor([[[T, F, F, F, F, F, F, F, F],
[T, T, F, F, F, F, F, F, F],
[T, T, T, F, F, F, F, F, F],
[T, T, T, T, F, F, F, F, F],
[T, T, F, F, T, F, F, F, F],
[T, T, F, F, T, T, F, F, F],
[T, T, T, F, F, F, T, F, F],
[T, F, F, F, F, F, F, F, F],
[T, T, F, F, F, F, F, F, F]],
[[T, F, F, F, F, F, F, F, F],
[T, T, F, F, F, F, F, F, F],
[T, T, T, F, F, F, F, F, F],
[T, T, T, T, F, F, F, F, F],
[T, F, F, F, T, F, F, F, F],
[T, F, F, F, T, T, F, F, F],
[T, F, F, F, T, T, T, F, F],
[T, T, F, F, F, F, F, T, F],
[T, T, F, F, F, F, F, T, T]]])
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
beams_t = Tensor(name='beams',
shape=beams.shape,
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
position_ids_base_t = Tensor(
name='position_ids_base',
shape=position_ids_base.shape,
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
outputs = tensorrt_llm.models.redrafter.redrafter_helper._beams2tree(
beams_t, nb, bl, position_ids_base_t)
outputs[0].mark_output('active_tokens_flattened')
outputs[1].mark_output('draft_token_indices')
outputs[2].mark_output('spec_decoding_mask')
outputs[3].mark_output('position_offsets')
outputs[4].mark_output('packed_position_ids')
outputs[5].mark_output('total_lengths')
outputs[6].mark_output('max_gen_len')
outputs[7].mark_output('total_gen_len')
# save onnx
# model_path = 'b2t.onnx'
# to_onnx(network.trt_network, model_path)
session = create_session(
builder,
network,
precision='float32',
)
inputs = {
'beams': beams,
'position_ids_base': position_ids_base,
}
outputs = {
"active_tokens_flattened":
torch.empty((bs * nb * bl, ), dtype=torch.int32),
"draft_token_indices":
torch.empty((bs, nb, bl), dtype=torch.int32),
"spec_decoding_mask":
torch.empty((bs * nb * bl * nb * bl, ), dtype=torch.bool),
"position_offsets":
torch.empty((bs * nb * bl, ), dtype=torch.int32),
"packed_position_ids":
torch.empty((bs * nb * bl, ), dtype=torch.int32),
"total_lengths":
torch.empty((bs, ), dtype=torch.int32),
"max_len":
torch.empty((), dtype=torch.int32),
"total_gen_len":
torch.empty((), dtype=torch.int32),
}
outputs = run_session(session, inputs, outputs)
# # compare diff
torch.testing.assert_close(outputs['max_gen_len'],
ref_max_len,
rtol=0,
atol=0)
torch.testing.assert_close(outputs['total_gen_len'],
ref_total_gen_len,
rtol=0,
atol=0)
torch.testing.assert_close(outputs['total_lengths'],
ref_total_lengths,
rtol=0,
atol=0)
torch.testing.assert_close(
outputs['active_tokens_flattened'][:ref_total_gen_len],
ref_active_flat_tokens,
rtol=0,
atol=0)
torch.testing.assert_close(outputs['draft_token_indices'],
ref_draft_token_indices,
rtol=0,
atol=0)
torch.testing.assert_close(
outputs["spec_decoding_mask"][:bs * ref_max_len * ref_max_len].view(
bs, ref_max_len, ref_max_len),
ref_mask,
rtol=0,
atol=0)
torch.testing.assert_close(
outputs['position_offsets'][:bs * ref_max_len].view(
bs, ref_max_len),
ref_position_offsets,
rtol=0,
atol=0)
torch.testing.assert_close(
outputs['packed_position_ids'][:ref_total_gen_len],
ref_packed_position_ids,
rtol=0,
atol=0)
torch.set_default_device(old_device)
return