TensorRT-LLMs/tests/model/redrafter/test_packed_position_ids.py
2024-08-29 17:25:07 +08:00

119 lines
4.5 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import torch
import tensorrt_llm
import tensorrt_llm.models.redrafter
import tensorrt_llm.models.redrafter.redrafter_helper
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir))
from utils.util import create_session, run_session, set_input_shapes
class TestReDrafter(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('warning')
########################################################################################################################
def test_packed_position_ids(self):
bs = 2
nb = 3
bl = 4
max_gen = nb * (bl - 1) + 1
old_device = torch.get_default_device()
torch.set_default_device("cuda")
active_indices = torch.tensor(
[[0, 1, 2, 3, 6, 7, 11, 0, 1], [0, 1, 2, 3, 5, 6, 7, 10, 11]],
dtype=torch.int32) % bl
total_lengths = torch.tensor([7, 9], dtype=torch.int32)
total_gen_len = total_lengths.sum()
max_tl = total_lengths.max()
indices = torch.arange(max_tl, dtype=torch.int32)
position_ids_base = torch.tensor([3, 10], dtype=torch.int32)
# ref outputs
ref_packed_position_ids = torch.tensor(
[3, 4, 5, 6, 5, 6, 6, 10, 11, 12, 13, 11, 12, 13, 12, 13],
dtype=torch.int32)
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
active_indices_t = Tensor(
name='ai',
shape=[-1, -1],
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
indices_t = Tensor(name='i',
shape=[-1],
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
total_lengths_t = Tensor(
name='tl',
shape=[-1],
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
position_ids_base_t = Tensor(
name='pib',
shape=[-1],
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
output = tensorrt_llm.models.redrafter.redrafter_helper._get_packed_position_ids(
active_indices_t,
indices_t,
total_lengths_t,
position_ids_base_t,
)
output.mark_output('packed_position_ids')
# save onnx
# model_path = 'packed_position.onnx'
# to_onnx(net.trt_network, model_path)
# trt run
# needs profile for dynamic shape
profile = builder.trt_builder.create_optimization_profile()
set_input_shapes(profile, active_indices_t, [1, 0], [16, max_gen // 2],
[32, max_gen])
set_input_shapes(profile, indices_t, [0], [max_gen // 2], [max_gen])
set_input_shapes(profile, total_lengths_t, [1], [16], [32])
set_input_shapes(profile, position_ids_base_t, [1], [16], [32])
session = create_session(builder,
network,
precision='float32',
optimization_profiles=[profile])
inputs = {
'ai': active_indices,
'i': indices,
'tl': total_lengths,
'pib': position_ids_base,
}
outputs = {
"packed_position_ids": torch.empty((bs * nb * bl, ),
dtype=torch.int32),
}
outputs = run_session(session, inputs, outputs)
torch.testing.assert_close(
outputs['packed_position_ids'][:total_gen_len],
ref_packed_position_ids,
rtol=0,
atol=0)
torch.set_default_device(old_device)
return