mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
1100 lines
48 KiB
Python
1100 lines
48 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import math
|
|
import os
|
|
import random
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
from argparse import Namespace
|
|
from itertools import product
|
|
from unittest.mock import patch
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
# isort: off
|
|
import torch
|
|
# isort: on
|
|
from parameterized import parameterized
|
|
from transformers import GPT2Config, GPT2LMHeadModel
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Builder
|
|
from tensorrt_llm._utils import str_dtype_to_torch
|
|
from tensorrt_llm.functional import RotaryScalingType
|
|
from tensorrt_llm.layers import PositionEmbeddingType
|
|
from tensorrt_llm.models.gpt.convert import load_weights_from_hf_model
|
|
from tensorrt_llm.network import net_guard
|
|
from tensorrt_llm.plugin.plugin import ContextFMHAType
|
|
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
|
|
from tensorrt_llm.runtime.generation import _prepare_attention_mask
|
|
from tensorrt_llm.runtime.kv_cache_manager import GenerationSequence
|
|
from tensorrt_llm.runtime.memory_pools.pools_kv_cache_manager import \
|
|
PoolsKVCacheManager
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
|
|
from examples.gpt.convert_checkpoint import convert_and_save_hf
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.llm_data import llm_models_root
|
|
from utils.util import skip_fp32_accum_pre_ampere, unittest_name_func
|
|
|
|
from tensorrt_llm.runtime.memory_pools.memory_pools_allocator import \
|
|
MemoryPoolsAllocator
|
|
|
|
|
|
class TestGPT(unittest.TestCase):
|
|
|
|
def _gen_hf_gpt(self, hidden_act, n_layer, max_length, dtype):
|
|
gpt_config = GPT2Config(
|
|
activation_function=hidden_act,
|
|
n_layer=n_layer,
|
|
max_length=max_length,
|
|
torch_dtype=dtype,
|
|
)
|
|
gpt_config.n_kv_head = gpt_config.n_head
|
|
hf_gpt = GPT2LMHeadModel(gpt_config).cuda().eval()
|
|
return gpt_config, hf_gpt
|
|
|
|
def _gen_tensorrt_llm_network(self, network, builder, hf_gpt, gpt_config,
|
|
batch_size, input_len, output_len, dtype,
|
|
gpt_attention_plugin, tensor_parallel,
|
|
apply_query_key_layer_scaling,
|
|
gather_context_logits,
|
|
gather_generation_logits):
|
|
config = {
|
|
'architecture': 'GPTForCausalLM',
|
|
'dtype': dtype,
|
|
'num_hidden_layers': gpt_config.n_layer,
|
|
'num_attention_heads': gpt_config.n_head,
|
|
'num_key_value_heads': gpt_config.n_head,
|
|
'hidden_size': gpt_config.n_embd,
|
|
'intermediate_size': gpt_config.n_embd * 4,
|
|
'norm_epsilon': 1e-5,
|
|
'vocab_size': gpt_config.vocab_size,
|
|
'position_embedding_type': 'learned_absolute',
|
|
'max_position_embeddings': gpt_config.n_positions,
|
|
'hidden_act': gpt_config.activation_function,
|
|
'mapping': {
|
|
'world_size': tensor_parallel,
|
|
'tp_size': tensor_parallel,
|
|
},
|
|
'bias': getattr(gpt_config, 'bias', True),
|
|
'apply_query_key_layer_scaling': apply_query_key_layer_scaling,
|
|
}
|
|
config = tensorrt_llm.models.GPTConfig.from_dict(config)
|
|
weights = load_weights_from_hf_model(hf_gpt, config)
|
|
|
|
tensorrt_llm_gpt = tensorrt_llm.models.GPTForCausalLM(config)
|
|
tensorrt_llm_gpt.load(weights)
|
|
|
|
with net_guard(network):
|
|
# Initialize model
|
|
network.set_named_parameters(tensorrt_llm_gpt.named_parameters())
|
|
inputs = tensorrt_llm_gpt.prepare_inputs(
|
|
max_batch_size=batch_size,
|
|
max_input_len=input_len,
|
|
max_seq_len=input_len + output_len,
|
|
max_num_tokens=batch_size * input_len,
|
|
use_cache=True,
|
|
max_beam_width=1,
|
|
gather_context_logits=gather_context_logits,
|
|
gather_generation_logits=gather_generation_logits)
|
|
|
|
# Prepare
|
|
tensorrt_llm_gpt(**inputs)
|
|
|
|
return network
|
|
|
|
def _gen_tensorrt_llm_runtime(self,
|
|
log_level,
|
|
dtype,
|
|
world_size,
|
|
rank,
|
|
gpt_config,
|
|
hf_gpt,
|
|
model,
|
|
use_plugin,
|
|
batch_size,
|
|
input_len,
|
|
output_len,
|
|
use_refit,
|
|
fast_building=False,
|
|
apply_query_key_layer_scaling=False,
|
|
context_fmha_type=ContextFMHAType.disabled,
|
|
enable_remove_input_padding=False,
|
|
enable_paged_kv_cache=False,
|
|
tokens_per_block=128,
|
|
gather_context_logits=False,
|
|
gather_generation_logits=False):
|
|
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
|
|
|
|
runtime = None
|
|
builder = Builder()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
|
|
builder_config = builder.create_builder_config(
|
|
name='gpt',
|
|
precision=dtype,
|
|
timing_cache='model.cache',
|
|
tensor_parallel=world_size, # TP only
|
|
use_refit=use_refit,
|
|
gather_context_logits=gather_context_logits,
|
|
gather_generation_logits=gather_generation_logits,
|
|
strongly_typed=True,
|
|
)
|
|
network = builder.create_network()
|
|
network.plugin_config.to_legacy_setting()
|
|
if use_plugin:
|
|
network.plugin_config.gpt_attention_plugin = dtype
|
|
if fast_building:
|
|
network.plugin_config.gemm_plugin = dtype
|
|
network.plugin_config.set_context_fmha(context_fmha_type)
|
|
if enable_remove_input_padding:
|
|
network.plugin_config.remove_input_padding = True
|
|
if enable_paged_kv_cache:
|
|
network.plugin_config.enable_paged_kv_cache(tokens_per_block)
|
|
|
|
self._gen_tensorrt_llm_network(network, builder, hf_gpt, gpt_config,
|
|
batch_size, input_len, output_len,
|
|
dtype, use_plugin, world_size,
|
|
apply_query_key_layer_scaling,
|
|
gather_context_logits,
|
|
gather_generation_logits)
|
|
|
|
engine_buffer = builder.build_engine(network, builder_config)
|
|
runtime = tensorrt_llm.runtime.generation._Runtime(
|
|
engine_buffer, mapping)
|
|
return runtime, engine_buffer
|
|
|
|
@parameterized.expand([("other", False)], name_func=unittest_name_func)
|
|
def test_gpt_float32(self, test_partition, use_refit):
|
|
torch.manual_seed(42)
|
|
|
|
model = 'gpt'
|
|
log_level = 'error'
|
|
dtype = 'float32'
|
|
world_size = 1
|
|
rank = 0
|
|
hidden_act = 'gelu'
|
|
n_layer = 2
|
|
max_length = 2
|
|
batch_size = 4
|
|
beam_width = 1
|
|
seq_len = 128
|
|
total_length = seq_len + max_length
|
|
use_plugin = False
|
|
|
|
gpt_config, hf_gpt = self._gen_hf_gpt(hidden_act, n_layer, max_length,
|
|
dtype)
|
|
runtime, _ = self._gen_tensorrt_llm_runtime(
|
|
log_level, dtype, world_size, rank, gpt_config, hf_gpt, model,
|
|
use_plugin, batch_size, seq_len, max_length, use_refit)
|
|
|
|
# compare context
|
|
pad_token_id = 50256
|
|
ctx_ids = torch.randint(100, (batch_size, seq_len)).int().cuda()
|
|
ctx_ids[0][-1] = pad_token_id
|
|
ctx_ids[1][-3:] = pad_token_id
|
|
ctx_ids[2][-5:] = pad_token_id
|
|
ctx_context_lengths = seq_len * torch.ones(
|
|
(batch_size), dtype=torch.int32, device='cuda')
|
|
ctx_host_context_lengths = ctx_context_lengths.cpu()
|
|
ctx_host_request_types = torch.tensor([0] * batch_size,
|
|
dtype=torch.int32,
|
|
device='cpu')
|
|
ctx_position_ids = torch.tensor(range(seq_len),
|
|
dtype=torch.int32).reshape([
|
|
1, seq_len
|
|
]).expand([batch_size, seq_len]).cuda()
|
|
ctx_last_token_ids = ctx_context_lengths.clone()
|
|
ctx_attention_mask = _prepare_attention_mask(ctx_ids)
|
|
|
|
cache_indirections = [
|
|
torch.full((
|
|
batch_size,
|
|
beam_width,
|
|
total_length,
|
|
),
|
|
0,
|
|
dtype=torch.int32,
|
|
device='cuda'),
|
|
torch.full((
|
|
batch_size,
|
|
beam_width,
|
|
total_length,
|
|
),
|
|
0,
|
|
dtype=torch.int32,
|
|
device='cuda')
|
|
] # ping-pong buffers
|
|
|
|
perf_knob_tensor_size = 16
|
|
context_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size,
|
|
dtype=torch.int64)
|
|
host_context_progress = torch.tensor([0], dtype=torch.int64)
|
|
|
|
ctx_buffer = {
|
|
'input_ids': ctx_ids,
|
|
'position_ids': ctx_position_ids,
|
|
'context_lengths': ctx_context_lengths,
|
|
'host_context_lengths': ctx_host_context_lengths,
|
|
'last_token_ids': ctx_last_token_ids,
|
|
'attention_mask': ctx_attention_mask,
|
|
'host_request_types': ctx_host_request_types,
|
|
'cache_indirection': cache_indirections[0],
|
|
'host_runtime_perf_knobs': context_runtime_perf_knobs,
|
|
'host_context_progress': host_context_progress,
|
|
}
|
|
ctx_shape = {k: v.shape for k, v in ctx_buffer.items()}
|
|
for i in range(gpt_config.n_layer):
|
|
shape = (batch_size, 2, gpt_config.n_head, 0,
|
|
gpt_config.n_embd // gpt_config.n_head)
|
|
past_buffer = torch.zeros((1, ),
|
|
dtype=str_dtype_to_torch(dtype),
|
|
device='cuda')
|
|
ctx_shape.update({
|
|
f'past_key_value_{i}': shape,
|
|
})
|
|
shape = (batch_size, 2, gpt_config.n_head, seq_len,
|
|
gpt_config.n_embd // gpt_config.n_head)
|
|
ctx_buffer.update({
|
|
f'past_key_value_{i}':
|
|
past_buffer,
|
|
f'present_key_value_{i}':
|
|
torch.zeros(shape,
|
|
dtype=str_dtype_to_torch(dtype),
|
|
device='cuda'),
|
|
})
|
|
|
|
context = runtime.ctx_context
|
|
runtime._set_shape(context, ctx_shape)
|
|
runtime._set_buffer(context, ctx_buffer)
|
|
runtime._run(context)
|
|
torch.cuda.synchronize()
|
|
res = ctx_buffer['logits']
|
|
|
|
with torch.no_grad():
|
|
hf_outputs = hf_gpt.forward(ctx_ids,
|
|
attention_mask=ctx_attention_mask)
|
|
torch.cuda.synchronize()
|
|
ref = hf_outputs.logits[:, -1, :]
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
res.cpu().numpy(),
|
|
atol=1e-2)
|
|
|
|
for i in range(gpt_config.n_layer):
|
|
res_present_key_value = ctx_buffer[f'present_key_value_{i}']
|
|
ref_present_key, ref_present_value = hf_outputs.past_key_values[i]
|
|
|
|
past_key_value_tensor = res_present_key_value.permute(1, 0, 2, 3, 4)
|
|
key, value = past_key_value_tensor.chunk(2)
|
|
|
|
head_size = gpt_config.n_embd // gpt_config.n_head
|
|
key = key.to(torch.float32).reshape(batch_size, gpt_config.n_head,
|
|
seq_len, head_size)
|
|
value = value.reshape(batch_size, gpt_config.n_head, seq_len,
|
|
head_size)
|
|
|
|
np.testing.assert_allclose(ref_present_key.cpu().numpy(),
|
|
key.cpu().numpy(),
|
|
atol=1e-2)
|
|
|
|
np.testing.assert_allclose(ref_present_value.cpu().numpy(),
|
|
value.cpu().numpy(),
|
|
atol=1e-2)
|
|
|
|
# compare generation
|
|
gen_id = torch.randint(100, (batch_size, 1)).int().cuda()
|
|
gen_context_lengths = ctx_context_lengths.clone()
|
|
gen_host_context_lengths = ctx_host_context_lengths.clone()
|
|
gen_host_request_types = torch.tensor([1] * batch_size,
|
|
dtype=torch.int32,
|
|
device='cpu')
|
|
gen_position_ids = torch.ones_like(gen_id).cuda() * seq_len
|
|
gen_last_token_ids = torch.zeros_like(gen_context_lengths).cuda()
|
|
gen_attention_mask = torch.cat([
|
|
ctx_attention_mask,
|
|
ctx_attention_mask.new_ones((ctx_attention_mask.shape[0], 1))
|
|
],
|
|
dim=-1)
|
|
|
|
gen_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size,
|
|
dtype=torch.int64)
|
|
step1_shape = {
|
|
'input_ids': gen_id.shape,
|
|
'context_lengths': gen_context_lengths.shape,
|
|
'host_context_lengths': gen_host_context_lengths.shape,
|
|
'host_request_types': gen_host_request_types.shape,
|
|
'position_ids': gen_position_ids.shape,
|
|
'last_token_ids': gen_last_token_ids.shape,
|
|
'attention_mask': gen_attention_mask.shape,
|
|
'cache_indirection': cache_indirections[1].shape,
|
|
'host_runtime_perf_knobs': gen_runtime_perf_knobs.shape,
|
|
'host_context_progress': host_context_progress.shape,
|
|
}
|
|
step1_buffer = {
|
|
'input_ids': gen_id,
|
|
'context_lengths': gen_context_lengths.contiguous(),
|
|
'host_context_lengths': gen_host_context_lengths.contiguous(),
|
|
'host_request_types': gen_host_request_types.contiguous(),
|
|
'position_ids': gen_position_ids.contiguous(),
|
|
'last_token_ids': gen_last_token_ids.contiguous(),
|
|
'attention_mask': gen_attention_mask.contiguous(),
|
|
'cache_indirection': cache_indirections[1].contiguous(),
|
|
'host_runtime_perf_knobs': gen_runtime_perf_knobs,
|
|
'host_context_progress': host_context_progress,
|
|
}
|
|
for i in range(gpt_config.n_layer):
|
|
shape = (batch_size, 2, gpt_config.n_head, seq_len,
|
|
gpt_config.n_embd // gpt_config.n_head)
|
|
step1_shape.update({
|
|
f'past_key_value_{i}': shape,
|
|
})
|
|
step1_buffer.update({
|
|
f'past_key_value_{i}':
|
|
ctx_buffer[f'present_key_value_{i}'],
|
|
})
|
|
|
|
context = runtime.context_1
|
|
runtime._set_shape(context, step1_shape)
|
|
runtime._set_buffer(context, step1_buffer)
|
|
runtime._run(context)
|
|
torch.cuda.synchronize()
|
|
res = step1_buffer['logits']
|
|
|
|
with torch.no_grad():
|
|
hf_outputs = hf_gpt.forward(
|
|
gen_id,
|
|
attention_mask=gen_attention_mask,
|
|
past_key_values=hf_outputs.past_key_values,
|
|
use_cache=True)
|
|
torch.cuda.synchronize()
|
|
ref = hf_outputs.logits[:, -1, :]
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
res.cpu().numpy(),
|
|
atol=1e-2)
|
|
|
|
for i in range(gpt_config.n_layer):
|
|
res_present_key_value = step1_buffer[f'present_key_value_{i}']
|
|
|
|
ref_present_key, ref_present_value = hf_outputs.past_key_values[i]
|
|
|
|
past_key_value_tensor = res_present_key_value.permute(1, 0, 2, 3, 4)
|
|
key, value = past_key_value_tensor.chunk(2)
|
|
|
|
head_size = gpt_config.n_embd // gpt_config.n_head
|
|
key = key.reshape(batch_size, gpt_config.n_head, seq_len + 1,
|
|
head_size)
|
|
value = value.reshape(batch_size, gpt_config.n_head, seq_len + 1,
|
|
head_size)
|
|
|
|
np.testing.assert_allclose(ref_present_key.cpu().numpy(),
|
|
key.cpu().numpy(),
|
|
atol=1e-2)
|
|
|
|
np.testing.assert_allclose(ref_present_value.cpu().numpy(),
|
|
value.cpu().numpy(),
|
|
atol=1e-2)
|
|
|
|
def load_test_cases():
|
|
test_cases = list(
|
|
product([False, True], [False, True], [False, True], [
|
|
ContextFMHAType.disabled, ContextFMHAType.enabled,
|
|
ContextFMHAType.enabled_with_fp32_acc
|
|
], [False, True], [False, True], [False, True], [False, True]))
|
|
# split test cases into 4 partitions
|
|
test_cases = [(f"partition{int(i % 4)}", ) + case
|
|
for i, case in enumerate(test_cases)]
|
|
|
|
return test_cases
|
|
|
|
@parameterized.expand(load_test_cases, name_func=unittest_name_func)
|
|
def test_gpt_plugin(self, test_partition, use_refit, fast_building,
|
|
apply_query_key_layer_scaling, context_fmha_type,
|
|
enable_remove_input_padding, enable_paged_kv_cache,
|
|
gather_context_logits, gather_generation_logits):
|
|
# inflight batching mode only works with remove_input_padding and paged_kv_cache
|
|
use_in_flight_batching = enable_remove_input_padding and enable_paged_kv_cache and not (
|
|
gather_context_logits or gather_generation_logits)
|
|
|
|
# Skip tests that are not supported in pre-ampere architecture
|
|
skip_fp32_accum_pre_ampere(context_fmha_type)
|
|
|
|
torch.manual_seed(0)
|
|
random.seed(0)
|
|
|
|
model = 'gpt'
|
|
log_level = 'error'
|
|
dtype = 'float16'
|
|
world_size = 1
|
|
rank = 0
|
|
hidden_act = 'gelu'
|
|
n_layer = 1
|
|
max_length = 2
|
|
batch_size = 4
|
|
beam_width = 1
|
|
seq_len = 128
|
|
total_length = seq_len + max_length
|
|
use_plugin = True
|
|
tokens_per_block = 128
|
|
gpt_config, hf_gpt = self._gen_hf_gpt(hidden_act, n_layer,
|
|
seq_len + max_length, dtype)
|
|
runtime, _ = self._gen_tensorrt_llm_runtime(
|
|
log_level, dtype, world_size, rank, gpt_config, hf_gpt, model,
|
|
use_plugin, batch_size, seq_len, max_length, use_refit,
|
|
fast_building, apply_query_key_layer_scaling, context_fmha_type,
|
|
enable_remove_input_padding, enable_paged_kv_cache,
|
|
tokens_per_block, gather_context_logits, gather_generation_logits)
|
|
key_value_cache_buffers = []
|
|
value_cache_buffers = []
|
|
head_size = gpt_config.n_embd // gpt_config.n_head
|
|
|
|
if enable_paged_kv_cache:
|
|
num_blocks = batch_size * beam_width * math.ceil(
|
|
total_length / tokens_per_block)
|
|
cache_shape = (
|
|
num_blocks,
|
|
gpt_config.n_layer,
|
|
2,
|
|
gpt_config.n_head,
|
|
tokens_per_block,
|
|
head_size,
|
|
)
|
|
key_value_cache_buffers.append(
|
|
torch.zeros(cache_shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
|
|
device='cuda'))
|
|
else:
|
|
cache_shape = (
|
|
batch_size,
|
|
2,
|
|
gpt_config.n_head,
|
|
total_length,
|
|
head_size,
|
|
)
|
|
for _ in range(gpt_config.n_layer):
|
|
key_value_cache_buffers.append(
|
|
torch.zeros(
|
|
cache_shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
|
|
device='cuda'))
|
|
|
|
for _ in range(gpt_config.n_layer):
|
|
value_cache_buffers.append(
|
|
torch.zeros((
|
|
batch_size,
|
|
gpt_config.n_head,
|
|
total_length,
|
|
head_size,
|
|
),
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
|
|
device='cuda'))
|
|
|
|
cache_indirections = [
|
|
torch.full((
|
|
batch_size,
|
|
beam_width,
|
|
total_length,
|
|
),
|
|
0,
|
|
dtype=torch.int32,
|
|
device='cuda'),
|
|
torch.full((
|
|
batch_size,
|
|
beam_width,
|
|
total_length,
|
|
),
|
|
0,
|
|
dtype=torch.int32,
|
|
device='cuda')
|
|
] # ping-pong buffers
|
|
|
|
if enable_paged_kv_cache:
|
|
max_blocks_per_seq = math.ceil(total_length / tokens_per_block)
|
|
num_blocks = batch_size * beam_width * max_blocks_per_seq
|
|
|
|
memory_pools_allocator = MemoryPoolsAllocator(
|
|
num_blocks=num_blocks,
|
|
tokens_per_block=tokens_per_block,
|
|
head_size=head_size)
|
|
num_kv_heads_per_layer = MemoryPoolsAllocator.prepare_num_kv_heads_per_layer(
|
|
gpt_config.n_head, gpt_config.n_layer)
|
|
memory_pools_allocator.allocate(dtype, num_kv_heads_per_layer)
|
|
pools_kv_cache_manager = PoolsKVCacheManager(
|
|
memory_pools_allocator.pools_metadata,
|
|
max_blocks_per_seq,
|
|
num_blocks,
|
|
tokens_per_block,
|
|
head_size,
|
|
max_attention_window_size=total_length,
|
|
beam_width=beam_width,
|
|
sink_token_len=0)
|
|
|
|
host_kv_cache_pool_pointers = memory_pools_allocator.get_kv_cache_pool_pointers(
|
|
)
|
|
host_kv_cache_pool_mapping = memory_pools_allocator.pool_mapping
|
|
|
|
# block_size = gpt_config.n_head * tokens_per_block * head_size
|
|
# kv_cache_manager = KVCacheManager(
|
|
# num_layers=gpt_config.n_layer,
|
|
# num_blocks=num_blocks,
|
|
# block_size=block_size,
|
|
# tokens_per_block=tokens_per_block,
|
|
# max_blocks_per_seq=max_blocks_per_seq,
|
|
# max_attention_window_size=total_length,
|
|
# sink_token_len=0,
|
|
# beam_width=beam_width)
|
|
# host_kv_cache_pool_pointers = torch.tensor(
|
|
# [key_value_cache_buffers[0].data_ptr(), 0], dtype=torch.int64)
|
|
|
|
# Add sequences to the manager
|
|
for bi in range(batch_size):
|
|
generation_sequence = GenerationSequence(seq_idx=bi,
|
|
batch_idx=bi)
|
|
pools_kv_cache_manager.add_sequence(generation_sequence,
|
|
seq_len)
|
|
|
|
# Pre allocate the kv cache for the generated tokens.
|
|
pools_kv_cache_manager.step([False] * batch_size)
|
|
|
|
def run_engine(context,
|
|
input_ids,
|
|
context_lengths,
|
|
host_request_types,
|
|
position_ids,
|
|
last_token_ids,
|
|
cache_indirection,
|
|
host_past_key_value_lengths,
|
|
host_max_attention_window_sizes,
|
|
host_sink_token_length,
|
|
host_runtime_perf_knobs,
|
|
host_context_progress,
|
|
sequence_length=None,
|
|
host_context_lengths=None):
|
|
|
|
ctx_buffer = {
|
|
'input_ids': input_ids,
|
|
'context_lengths': context_lengths,
|
|
'host_request_types': host_request_types,
|
|
'position_ids': position_ids,
|
|
'last_token_ids': last_token_ids,
|
|
'cache_indirection': cache_indirection,
|
|
'host_past_key_value_lengths': host_past_key_value_lengths,
|
|
'sequence_length': sequence_length,
|
|
'host_sink_token_length': host_sink_token_length,
|
|
'host_runtime_perf_knobs': host_runtime_perf_knobs,
|
|
'host_context_progress': host_context_progress,
|
|
}
|
|
|
|
assert host_request_types is not None
|
|
if enable_remove_input_padding:
|
|
assert host_context_lengths is not None, "host_context_lengths is required for ragged input"
|
|
ctx_buffer['host_context_lengths'] = host_context_lengths
|
|
|
|
if enable_paged_kv_cache:
|
|
assert beam_width == 1
|
|
# for beam_width > 1 the argument must be '1' in ctx phase and 'beam_width' in gen phase
|
|
host_kv_cache_block_offsets = pools_kv_cache_manager.get_block_offsets(
|
|
beam_width=1)
|
|
kv_cache_block_offsets = host_kv_cache_block_offsets.to('cuda')
|
|
|
|
shape = kv_cache_block_offsets.shape
|
|
shape = [shape[0], shape[1] * shape[2], *shape[3:]]
|
|
ctx_buffer[
|
|
f'kv_cache_block_offsets'] = kv_cache_block_offsets.reshape(
|
|
shape).contiguous()
|
|
ctx_buffer[
|
|
f'host_kv_cache_block_offsets'] = host_kv_cache_block_offsets.reshape(
|
|
shape).contiguous()
|
|
ctx_buffer[
|
|
f'host_kv_cache_pool_pointers'] = host_kv_cache_pool_pointers.contiguous(
|
|
)
|
|
ctx_buffer[
|
|
f'host_kv_cache_pool_mapping'] = memory_pools_allocator.pool_mapping.contiguous(
|
|
)
|
|
|
|
ctx_buffer[
|
|
f'host_max_attention_window_sizes'] = host_max_attention_window_sizes
|
|
else:
|
|
for i in range(gpt_config.n_layer):
|
|
ctx_buffer[f'past_key_value_{i}'] = key_value_cache_buffers[
|
|
i]
|
|
ctx_buffer[
|
|
f'present_key_value_{i}'] = key_value_cache_buffers[i]
|
|
ctx_buffer[
|
|
f'host_max_attention_window_sizes'] = host_max_attention_window_sizes
|
|
|
|
ctx_shape = {
|
|
key: buffer.shape
|
|
for key, buffer in ctx_buffer.items()
|
|
}
|
|
|
|
runtime._set_shape(context, ctx_shape)
|
|
runtime._set_buffer(context, ctx_buffer)
|
|
runtime._run(context)
|
|
torch.cuda.synchronize()
|
|
res = ctx_buffer['logits']
|
|
return res
|
|
|
|
hf_outputs = None
|
|
step0_ids = None
|
|
step1_ids = None
|
|
|
|
def compare_context(run_ref_only=False):
|
|
nonlocal step0_ids
|
|
step0_ids = torch.randint(
|
|
100, (batch_size,
|
|
seq_len)).int().cuda() if step0_ids is None else step0_ids
|
|
ctx_ids = step0_ids.clone()
|
|
|
|
ctx_context_lengths = seq_len * torch.ones(
|
|
(batch_size), dtype=torch.int32, device='cuda')
|
|
ctx_position_ids = torch.tensor(range(seq_len),
|
|
dtype=torch.int32).reshape([
|
|
1, seq_len
|
|
]).expand([batch_size,
|
|
seq_len]).cuda()
|
|
ctx_last_token_ids = ctx_context_lengths.clone()
|
|
|
|
nonlocal hf_outputs
|
|
with torch.no_grad():
|
|
hf_outputs = hf_gpt.forward(ctx_ids)
|
|
torch.cuda.synchronize()
|
|
ref = hf_outputs.logits
|
|
if run_ref_only:
|
|
return ref[:, -1, :]
|
|
|
|
if enable_remove_input_padding:
|
|
ctx_ids = ctx_ids.view([batch_size * seq_len])
|
|
ctx_position_ids = ctx_position_ids.view([batch_size * seq_len])
|
|
ctx_last_token_ids = torch.cumsum(ctx_last_token_ids,
|
|
dim=0).int()
|
|
|
|
host_max_attention_window_sizes = torch.tensor([total_length] *
|
|
gpt_config.n_layer,
|
|
dtype=torch.int32)
|
|
host_sink_token_length = torch.tensor([0], dtype=torch.int32)
|
|
|
|
host_context_lengths = ctx_context_lengths.cpu(
|
|
) if enable_remove_input_padding else None
|
|
host_request_types = torch.tensor([0 for i in range(batch_size)],
|
|
dtype=torch.int32).cpu()
|
|
|
|
host_past_key_value_lengths = ctx_context_lengths.detach().clone(
|
|
).cpu()
|
|
# We need sequence_lengths start as context_lengths for step 0 (context),
|
|
# and it will be added one after each step.
|
|
sequence_length = ctx_context_lengths.detach().clone()
|
|
|
|
perf_knob_tensor_size = 16
|
|
ctx_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size,
|
|
dtype=torch.int64)
|
|
if context_fmha_type == ContextFMHAType.enabled_with_fp32_acc:
|
|
ctx_runtime_perf_knobs[1] = 1 # enable_context_fmha_fp32_acc
|
|
|
|
host_context_progress = torch.tensor([0], dtype=torch.int64)
|
|
|
|
res = run_engine(
|
|
context=runtime.ctx_context,
|
|
input_ids=ctx_ids,
|
|
context_lengths=ctx_context_lengths,
|
|
position_ids=ctx_position_ids,
|
|
last_token_ids=ctx_last_token_ids,
|
|
cache_indirection=cache_indirections[0],
|
|
host_past_key_value_lengths=host_past_key_value_lengths,
|
|
host_max_attention_window_sizes=host_max_attention_window_sizes,
|
|
host_sink_token_length=host_sink_token_length,
|
|
sequence_length=sequence_length,
|
|
host_context_lengths=host_context_lengths,
|
|
host_request_types=host_request_types,
|
|
host_runtime_perf_knobs=ctx_runtime_perf_knobs,
|
|
host_context_progress=host_context_progress)
|
|
|
|
if gather_context_logits:
|
|
np.testing.assert_allclose(ref.cpu().numpy().flatten(),
|
|
res.cpu().numpy().flatten(),
|
|
atol=1e-1)
|
|
else:
|
|
np.testing.assert_allclose(ref[:, -1, :].cpu().numpy(),
|
|
res.cpu().numpy(),
|
|
atol=1e-1)
|
|
|
|
def compare_generation(run_ref_only=False):
|
|
step = 1
|
|
nonlocal step1_ids
|
|
step1_ids = torch.randint(
|
|
100, (batch_size,
|
|
1)).int().cuda() if step1_ids is None else step1_ids
|
|
|
|
gen_ids = step1_ids.clone()
|
|
|
|
gen_context_lengths = seq_len * torch.ones(
|
|
(batch_size), dtype=torch.int32, device='cuda')
|
|
gen_position_ids = torch.ones_like(gen_ids).int().cuda() * seq_len
|
|
gen_last_token_ids = torch.zeros_like(
|
|
gen_context_lengths).int().cuda()
|
|
|
|
nonlocal hf_outputs
|
|
with torch.no_grad():
|
|
hf_outputs = hf_gpt.forward(
|
|
gen_ids,
|
|
past_key_values=hf_outputs.past_key_values,
|
|
use_cache=True)
|
|
torch.cuda.synchronize()
|
|
ref = hf_outputs.logits[:, -1, :]
|
|
if run_ref_only:
|
|
return ref
|
|
|
|
if enable_remove_input_padding:
|
|
gen_ids = gen_ids.view([batch_size])
|
|
gen_position_ids = gen_position_ids.view([batch_size])
|
|
gen_last_token_ids = torch.ones_like(
|
|
gen_context_lengths).int().cuda()
|
|
gen_last_token_ids = torch.cumsum(gen_last_token_ids,
|
|
dim=0).int()
|
|
|
|
host_past_key_value_lengths = torch.tensor([seq_len + step - 1] *
|
|
batch_size,
|
|
dtype=torch.int32)
|
|
host_max_attention_window_sizes = torch.tensor([seq_len + step] *
|
|
gpt_config.n_layer,
|
|
dtype=torch.int32)
|
|
host_sink_token_length = torch.tensor([0], dtype=torch.int32)
|
|
|
|
host_context_lengths = gen_context_lengths.cpu(
|
|
) if enable_remove_input_padding else None
|
|
host_request_types = torch.tensor([1 for i in range(batch_size)],
|
|
dtype=torch.int32).cpu()
|
|
|
|
# For step 1, the sequence_lengths = context_lengths + 1.
|
|
sequence_length = torch.add(gen_context_lengths.detach().clone(), 1)
|
|
|
|
perf_knob_tensor_size = 16
|
|
gen_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size,
|
|
dtype=torch.int64)
|
|
if context_fmha_type == ContextFMHAType.enabled_with_fp32_acc:
|
|
gen_runtime_perf_knobs[1] = 1 # enable_context_fmha_fp32_acc
|
|
|
|
host_context_progress = torch.tensor([0], dtype=torch.int64)
|
|
|
|
res = run_engine(
|
|
context=runtime.context_1,
|
|
input_ids=gen_ids,
|
|
context_lengths=gen_context_lengths,
|
|
position_ids=gen_position_ids,
|
|
last_token_ids=gen_last_token_ids,
|
|
cache_indirection=cache_indirections[1],
|
|
host_past_key_value_lengths=host_past_key_value_lengths,
|
|
host_max_attention_window_sizes=host_max_attention_window_sizes,
|
|
host_sink_token_length=host_sink_token_length,
|
|
sequence_length=sequence_length,
|
|
host_context_lengths=host_context_lengths,
|
|
host_request_types=host_request_types,
|
|
host_runtime_perf_knobs=gen_runtime_perf_knobs,
|
|
host_context_progress=host_context_progress)
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy().flatten(),
|
|
res.cpu().numpy().flatten(),
|
|
atol=1e-1)
|
|
|
|
def compare_mixing_context_and_generation_phases():
|
|
|
|
num_context_input = 2
|
|
assert batch_size >= num_context_input
|
|
num_generation_input = batch_size - num_context_input
|
|
|
|
# retrieve the reference output
|
|
ref_ctx_out = compare_context(True)[:num_context_input, :]
|
|
ref_gen_out = compare_generation(True)[num_context_input:, :]
|
|
ref_out = torch.cat([ref_ctx_out, ref_gen_out], dim=0)
|
|
|
|
ref_ctx_out = None
|
|
ref_gen_out = None
|
|
|
|
# compare_context()
|
|
|
|
# prepare the inputs for plugin-based gpt
|
|
assert step0_ids is not None and step1_ids is not None
|
|
input_ids = torch.cat([
|
|
step0_ids[:num_context_input, :].view(
|
|
(-1, )), step1_ids[num_context_input:].view((-1, ))
|
|
],
|
|
dim=0)
|
|
|
|
input_ids = input_ids.view((-1, ))
|
|
|
|
ctx_position_ids = torch.tensor(
|
|
range(seq_len), dtype=torch.int32).reshape(
|
|
(1, seq_len)).expand([num_generation_input,
|
|
seq_len]).cuda()
|
|
gen_position_ids = torch.ones_like(
|
|
step1_ids[num_context_input:].view(
|
|
(-1, ))).int().cuda() * seq_len
|
|
position_ids = torch.cat(
|
|
[ctx_position_ids.view((-1, )), gen_position_ids], dim=0).view(
|
|
(-1, ))
|
|
|
|
input_lengths = torch.tensor([seq_len] * num_context_input +
|
|
[1] * num_generation_input,
|
|
dtype=torch.int32).cuda()
|
|
gen_last_token_ids = torch.cumsum(input_lengths, dim=0).int().cuda()
|
|
|
|
# scalar of max_key_value_length for in-flight batching case
|
|
host_past_key_value_lengths = torch.tensor(
|
|
[0] * num_context_input + [seq_len] * num_generation_input,
|
|
dtype=torch.int32)
|
|
|
|
host_max_attention_window_sizes = torch.tensor([total_length] *
|
|
gpt_config.n_layer,
|
|
dtype=torch.int32)
|
|
|
|
host_sink_token_length = torch.tensor([0], dtype=torch.int32)
|
|
|
|
context_lengths = torch.tensor([seq_len] * batch_size,
|
|
dtype=torch.int32).cuda()
|
|
if enable_remove_input_padding:
|
|
host_context_lengths = context_lengths.cpu()
|
|
|
|
host_request_types = torch.tensor([0] * num_context_input +
|
|
[1] * num_generation_input,
|
|
dtype=torch.int32).cpu()
|
|
|
|
# The sequence_lengths = context_lengths + step for generation stage.
|
|
sequence_length = torch.tensor([seq_len] * num_context_input +
|
|
[seq_len + 1] * num_generation_input,
|
|
dtype=torch.int32).cuda()
|
|
perf_knob_tensor_size = 16
|
|
runtime_perf_knobs_tensor = torch.tensor([-1] *
|
|
perf_knob_tensor_size,
|
|
dtype=torch.int64)
|
|
if context_fmha_type == ContextFMHAType.enabled_with_fp32_acc:
|
|
runtime_perf_knobs_tensor[1] = 1 # enable_context_fmha_fp32_acc
|
|
|
|
host_context_progress = torch.tensor([0], dtype=torch.int64)
|
|
|
|
res = run_engine(
|
|
context=runtime.context_1,
|
|
input_ids=input_ids,
|
|
context_lengths=context_lengths,
|
|
position_ids=position_ids,
|
|
last_token_ids=gen_last_token_ids,
|
|
cache_indirection=cache_indirections[0],
|
|
host_past_key_value_lengths=host_past_key_value_lengths,
|
|
host_max_attention_window_sizes=host_max_attention_window_sizes,
|
|
host_sink_token_length=host_sink_token_length,
|
|
sequence_length=sequence_length,
|
|
host_context_lengths=host_context_lengths,
|
|
host_request_types=host_request_types,
|
|
host_runtime_perf_knobs=runtime_perf_knobs_tensor,
|
|
host_context_progress=host_context_progress)
|
|
|
|
np.testing.assert_allclose(ref_out.cpu().numpy(),
|
|
res.cpu().numpy(),
|
|
atol=1e-1)
|
|
|
|
# Main logics
|
|
compare_context()
|
|
compare_generation()
|
|
|
|
# Only inflight batching mode could accept the mixture of requests from both context and generation phases
|
|
if use_in_flight_batching:
|
|
compare_mixing_context_and_generation_phases()
|
|
|
|
@parameterized.expand([("other", False, False), ("other", False, True)],
|
|
name_func=unittest_name_func)
|
|
def test_greedy_search_float32(self, test_partition, use_refit, streaming):
|
|
torch.manual_seed(42)
|
|
|
|
model = 'gpt'
|
|
log_level = 'error'
|
|
dtype = 'float32'
|
|
world_size = 1
|
|
rank = 0
|
|
|
|
hidden_act = 'gelu'
|
|
n_layer = 2
|
|
max_new_tokens = 1
|
|
batch_size = 4
|
|
seq_len = 128
|
|
use_plugin = False
|
|
|
|
do_sample = False
|
|
early_stoppping = False
|
|
num_beams = 1
|
|
num_beam_groups = 1
|
|
temperature = 1
|
|
top_k = 0
|
|
top_p = 0.0
|
|
length_penalty = 1
|
|
repetition_penalty = 1
|
|
|
|
gpt_config, hf_gpt = self._gen_hf_gpt(hidden_act, n_layer,
|
|
max_new_tokens, dtype)
|
|
runtime, engine_buffer = self._gen_tensorrt_llm_runtime(
|
|
log_level, dtype, world_size, rank, gpt_config, hf_gpt, model,
|
|
use_plugin, batch_size, seq_len, max_new_tokens, use_refit)
|
|
|
|
model_config = ModelConfig(max_batch_size=batch_size,
|
|
max_beam_width=num_beams,
|
|
vocab_size=gpt_config.vocab_size,
|
|
num_layers=gpt_config.n_layer,
|
|
num_heads=gpt_config.n_head,
|
|
num_kv_heads=gpt_config.n_head,
|
|
hidden_size=gpt_config.n_embd,
|
|
gpt_attention_plugin=False,
|
|
dtype=dtype)
|
|
|
|
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
|
|
decoder = tensorrt_llm.runtime.GenerationSession(
|
|
model_config, engine_buffer, mapping)
|
|
pad_token_id = 50256
|
|
eos_token_id = 50257
|
|
sampling_config = SamplingConfig(end_id=eos_token_id,
|
|
pad_id=pad_token_id,
|
|
num_beams=num_beams,
|
|
temperature=temperature,
|
|
top_k=top_k,
|
|
top_p=top_p,
|
|
length_penalty=length_penalty,
|
|
repetition_penalty=repetition_penalty)
|
|
input_ids = torch.randint(100, (batch_size, seq_len)).int().cuda()
|
|
input_ids[0][-1] = pad_token_id
|
|
input_ids[1][-3:] = pad_token_id
|
|
input_ids[2][-5:] = pad_token_id
|
|
|
|
input_lengths = torch.ones(
|
|
(batch_size)).type(torch.int32).cuda() * seq_len
|
|
|
|
decoder.setup(batch_size,
|
|
max_context_length=seq_len,
|
|
max_new_tokens=max_new_tokens,
|
|
beam_width=num_beams)
|
|
if streaming:
|
|
output_ids_gen = decoder.decode(input_ids,
|
|
input_lengths,
|
|
sampling_config,
|
|
streaming=True)
|
|
for output_ids in output_ids_gen:
|
|
pass
|
|
else:
|
|
output_ids = decoder.decode(input_ids, input_lengths,
|
|
sampling_config)
|
|
#TODO: change to actual ragged tensor after GPT plugin supports it
|
|
output_ids_x = decoder.decode(input_ids, input_lengths, sampling_config)
|
|
|
|
# works because all requests in the batch has same
|
|
# TODO: enable this when GPT Plugin attention works
|
|
# output_ids_y = decoder.decode_batch([t[:input_lengths[i]] for i, t in enumerate(torch.split(input_ids, 1, dim=0))], sampling_config)
|
|
|
|
torch.cuda.synchronize()
|
|
torch.testing.assert_close(output_ids, output_ids_x)
|
|
|
|
res = output_ids.squeeze()
|
|
res = res[:, -max_new_tokens:]
|
|
|
|
ref_output_ids = hf_gpt.generate(input_ids,
|
|
do_sample=do_sample,
|
|
early_stopping=early_stoppping,
|
|
num_beams=num_beams,
|
|
temperature=temperature,
|
|
top_k=top_k,
|
|
top_p=top_p,
|
|
num_beam_groups=num_beam_groups,
|
|
max_new_tokens=max_new_tokens,
|
|
length_penalty=length_penalty,
|
|
repetition_penalty=repetition_penalty,
|
|
pad_token_id=pad_token_id,
|
|
eos_token_id=eos_token_id)
|
|
torch.cuda.synchronize()
|
|
ref = ref_output_ids[:, -max_new_tokens:]
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(), res.cpu().numpy())
|
|
|
|
@parameterized.expand(["other"], name_func=unittest_name_func)
|
|
def test_rope_scaling_is_set_in_attention(self, test_partition):
|
|
num_layers = 2
|
|
position_embedding_type = 'rope_gpt_neox'
|
|
rotary_embedding_percentage = 0.3
|
|
rotary_base = 99999.1
|
|
rotary_scaling = {"type": "linear", "factor": 2.72}
|
|
|
|
config = {
|
|
'architecture': 'GPTForCausalLM',
|
|
'dtype': 'float16',
|
|
'num_hidden_layers': num_layers,
|
|
'num_attention_heads': 4,
|
|
'hidden_size': 128,
|
|
'vocab_size': 256,
|
|
'max_position_embeddings': 1024,
|
|
'hidden_act': 'gelu',
|
|
'position_embedding_type': position_embedding_type,
|
|
'rotary_pct': rotary_embedding_percentage,
|
|
'rotary_base': rotary_base,
|
|
'rotary_scaling': rotary_scaling,
|
|
}
|
|
config = tensorrt_llm.models.PretrainedConfig.from_dict(config)
|
|
tensorrt_llm_gpt = tensorrt_llm.models.GPTForCausalLM(config)
|
|
|
|
for layer_i in range(num_layers):
|
|
assert tensorrt_llm_gpt.transformer.layers[
|
|
layer_i].attention.rotary_embedding_base == rotary_base
|
|
assert tensorrt_llm_gpt.transformer.layers[
|
|
layer_i].attention.rotary_embedding_scale == rotary_scaling[
|
|
"factor"]
|
|
assert tensorrt_llm_gpt.transformer.layers[
|
|
layer_i].attention.rotary_embedding_scale_type == RotaryScalingType.linear
|
|
assert tensorrt_llm_gpt.transformer.layers[
|
|
layer_i].attention.position_embedding_type == PositionEmbeddingType.rope_gpt_neox
|
|
|
|
@parameterized.expand(["other"], name_func=unittest_name_func)
|
|
def test_gpt_variant_is_overridden(self, test_partition):
|
|
model_root = llm_models_root()
|
|
if model_root is None:
|
|
pytest.skip("Skipping since real weights are unavailable.")
|
|
|
|
with tempfile.TemporaryDirectory() as tempdir:
|
|
cli_args = Namespace(tp_size=1,
|
|
pp_size=1,
|
|
model_dir=f"{model_root}/starcoder2-3b",
|
|
output_dir=tempdir,
|
|
gpt_variant="starcoder2",
|
|
dtype="float16",
|
|
load_model_on_cpu=False,
|
|
use_parallel_embedding=False,
|
|
embedding_sharding_dim=0,
|
|
use_weight_only=False,
|
|
int8_kv_cache=False,
|
|
smoothquant=None,
|
|
workers=1)
|
|
|
|
def check_gpt_variant(*args, **kwargs):
|
|
self.assertEqual(kwargs.get("gpt_variant", ""),
|
|
cli_args.gpt_variant)
|
|
return from_hugging_face(*args, **kwargs)
|
|
|
|
from_hugging_face = tensorrt_llm.models.GPTConfig.from_hugging_face
|
|
|
|
with patch('tensorrt_llm.models.GPTConfig.from_hugging_face',
|
|
side_effect=check_gpt_variant):
|
|
convert_and_save_hf(cli_args)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|