TensorRT-LLMs/quick-start-guide.html
Shi Xiaowei 3c4ef52e61
Update GitHub pages to v0.18.2 (#3624)
Signed-off-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2025-04-16 18:17:04 +08:00

703 lines
39 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="./" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Quick Start Guide &#8212; tensorrt_llm</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="_static/styles/nvidia-sphinx-theme.css?v=df3ac72c" />
<link rel="stylesheet" type="text/css" href="_static/copybutton.css?v=76b2166b" />
<!-- So that users can add custom icons -->
<script src="_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="_static/documentation_options.js?v=5929fcd5"></script>
<script src="_static/doctools.js?v=9a2dae69"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/clipboard.min.js?v=a7894cd8"></script>
<script src="_static/copybutton.js?v=65e89d2a"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'quick-start-guide';</script>
<link rel="icon" href="_static/favicon.png"/>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Key Features" href="key-features.html" />
<link rel="prev" title="Overview" href="overview.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="index.html">
<img src="_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="tensorrt_llm - Home"/>
<img src="_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="tensorrt_llm - Home"/>
<p class="title logo__title">tensorrt_llm</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="index.html">
<img src="_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="tensorrt_llm - Home"/>
<img src="_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="tensorrt_llm - Home"/>
<p class="title logo__title">tensorrt_llm</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="overview.html">Overview</a></li>
<li class="toctree-l1 current active"><a class="current reference internal" href="#">Quick Start Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="key-features.html">Key Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="torch.html">PyTorch Backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="release-notes.html">Release Notes</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Installation</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="installation/linux.html">Installing on Linux</a></li>
<li class="toctree-l1"><a class="reference internal" href="installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
<li class="toctree-l1"><a class="reference internal" href="installation/grace-hopper.html">Installing on Grace Hopper</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">LLM API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="llm-api/index.html">API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">LLM API Examples</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="llm-api-examples/index.html">LLM Examples Introduction</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_inference_async.html">Generate Text Asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_lookahead_decoding.html">Generate Text Using Lookahead Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_inference_async_streaming.html">Generate Text in Streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_logits_processor.html">Control generated text using logits post processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_medusa_decoding.html">Generate Text Using Medusa Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_quantization.html">Generation with Quantization</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_inference_customize.html">Generate text with customization</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_auto_parallel.html">Automatic Parallelism with LLM</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="llm-api-examples/customization.html">Common Customizations</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="llm-api-examples/llm_api_examples.html">Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_inference_async.html">Generate Text Asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_lookahead_decoding.html">Generate Text Using Lookahead Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_inference_async_streaming.html">Generate Text in Streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_logits_processor.html">Control generated text using logits post processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_medusa_decoding.html">Generate Text Using Medusa Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_quantization.html">Generation with Quantization</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_inference_customize.html">Generate text with customization</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm-api-examples/llm_auto_parallel.html">Automatic Parallelism with LLM</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Model Definition API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="python-api/tensorrt_llm.layers.html">Layers</a></li>
<li class="toctree-l1"><a class="reference internal" href="python-api/tensorrt_llm.functional.html">Functionals</a></li>
<li class="toctree-l1"><a class="reference internal" href="python-api/tensorrt_llm.models.html">Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="python-api/tensorrt_llm.plugin.html">Plugin</a></li>
<li class="toctree-l1"><a class="reference internal" href="python-api/tensorrt_llm.quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="python-api/tensorrt_llm.runtime.html">Runtime</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">C++ API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="_cpp_gen/executor.html">Executor</a></li>
<li class="toctree-l1"><a class="reference internal" href="_cpp_gen/runtime.html">Runtime</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Command-Line Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="commands/trtllm-build.html">trtllm-build</a></li>
<li class="toctree-l1"><a class="reference internal" href="commands/trtllm-serve.html">trtllm-serve</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Architecture</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="architecture/overview.html">TensorRT-LLM Architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="architecture/core-concepts.html">Model Definition</a></li>
<li class="toctree-l1"><a class="reference internal" href="architecture/checkpoint.html">TensorRT-LLM Checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="architecture/workflow.html">TensorRT-LLM Build Workflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="architecture/add-model.html">Adding a Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Advanced</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="advanced/gpt-attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="advanced/gpt-runtime.html">C++ GPT Runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="advanced/executor.html">Executor API</a></li>
<li class="toctree-l1"><a class="reference internal" href="advanced/graph-rewriting.html">Graph Rewriting Module</a></li>
<li class="toctree-l1"><a class="reference internal" href="advanced/inference-request.html">Inference Request</a></li>
<li class="toctree-l1"><a class="reference internal" href="advanced/lora.html">Run gpt-2b + LoRA using GptManager / cpp runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="advanced/expert-parallelism.html">Expert Parallelism in TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="advanced/kv-cache-reuse.html">KV cache reuse</a></li>
<li class="toctree-l1"><a class="reference internal" href="advanced/speculative-decoding.html">Speculative Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="advanced/disaggregated-service.html">Disaggregated-Service (experimental)</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Performance</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="performance/perf-overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="performance/perf-benchmarking.html">Benchmarking</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="performance/performance-tuning-guide/index.html">Performance Tuning Guide</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="performance/performance-tuning-guide/benchmarking-default-performance.html">Benchmarking Default Performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="performance/performance-tuning-guide/useful-build-time-flags.html">Useful Build-Time Flags</a></li>
<li class="toctree-l2"><a class="reference internal" href="performance/performance-tuning-guide/tuning-max-batch-size-and-max-num-tokens.html">Tuning Max Batch Size and Max Num Tokens</a></li>
<li class="toctree-l2"><a class="reference internal" href="performance/performance-tuning-guide/deciding-model-sharding-strategy.html">Deciding Model Sharding Strategy</a></li>
<li class="toctree-l2"><a class="reference internal" href="performance/performance-tuning-guide/fp8-quantization.html">FP8 Quantization</a></li>
<li class="toctree-l2"><a class="reference internal" href="performance/performance-tuning-guide/useful-runtime-flags.html">Useful Runtime Options</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="performance/perf-analysis.html">Performance Analysis</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="reference/troubleshooting.html">Troubleshooting</a></li>
<li class="toctree-l1"><a class="reference internal" href="reference/support-matrix.html">Support Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="reference/precision.html">Numerical Precision</a></li>
<li class="toctree-l1"><a class="reference internal" href="reference/memory.html">Memory Usage of TensorRT-LLM</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT-LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/Falcon180B-H200.html">Falcon-180B on a single H200 GPU with INT4 AWQ, and 6.7x faster Llama-70B over A100</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/quantization-in-TRT-LLM.html">Speed up inference with SOTA quantization techniques in TRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">Quick Start Guide</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="quick-start-guide">
<span id="id1"></span><h1>Quick Start Guide<a class="headerlink" href="#quick-start-guide" title="Link to this heading">#</a></h1>
<p>This is the starting point to try out TensorRT-LLM. Specifically, this Quick Start Guide enables you to quickly get setup and send HTTP requests using TensorRT-LLM.</p>
<section id="prerequisites">
<h2>Prerequisites<a class="headerlink" href="#prerequisites" title="Link to this heading">#</a></h2>
<ul>
<li><p>This quick start uses the Meta Llama 3.1 model. This model is subject to a particular <a class="reference external" href="https://llama.meta.com/llama-downloads/">license</a>. To download the model files, agree to the terms and <a class="reference external" href="https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct?clone=true">authenticate with Hugging Face</a>.</p></li>
<li><p>Complete the <a class="reference internal" href="installation/linux.html"><span class="std std-doc">installation</span></a> steps.</p></li>
<li><p>Pull the weights and tokenizer files for the chat-tuned variant of the Llama 3.1 8B model from the <a class="reference external" href="https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct">Hugging Face Hub</a>.</p>
<div class="highlight-console notranslate"><div class="highlight"><pre><span></span><span class="go">git clone https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct</span>
</pre></div>
</div>
</li>
</ul>
</section>
<section id="llm-api">
<h2>LLM API<a class="headerlink" href="#llm-api" title="Link to this heading">#</a></h2>
<p>The LLM API is a Python API designed to facilitate setup and inference with TensorRT-LLM directly within Python. It enables model optimization by simply specifying a HuggingFace repository name or a model checkpoint. The LLM API streamlines the process by managing checkpoint conversion, engine building, engine loading, and model inference, all through a single Python object.</p>
<p>Here is a simple example to show how to use the LLM API with TinyLlama.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="linenos"> 1</span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">SamplingParams</span>
<span class="linenos"> 2</span>
<span class="linenos"> 3</span>
<span class="linenos"> 4</span><span class="k">def</span><span class="w"> </span><span class="nf">main</span><span class="p">():</span>
<span class="linenos"> 5</span>
<span class="linenos"> 6</span> <span class="n">prompts</span> <span class="o">=</span> <span class="p">[</span>
<span class="linenos"> 7</span> <span class="s2">&quot;Hello, my name is&quot;</span><span class="p">,</span>
<span class="linenos"> 8</span> <span class="s2">&quot;The president of the United States is&quot;</span><span class="p">,</span>
<span class="linenos"> 9</span> <span class="s2">&quot;The capital of France is&quot;</span><span class="p">,</span>
<span class="linenos">10</span> <span class="s2">&quot;The future of AI is&quot;</span><span class="p">,</span>
<span class="linenos">11</span> <span class="p">]</span>
<span class="linenos">12</span> <span class="n">sampling_params</span> <span class="o">=</span> <span class="n">SamplingParams</span><span class="p">(</span><span class="n">temperature</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">top_p</span><span class="o">=</span><span class="mf">0.95</span><span class="p">)</span>
<span class="linenos">13</span>
<span class="linenos">14</span> <span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="n">model</span><span class="o">=</span><span class="s2">&quot;TinyLlama/TinyLlama-1.1B-Chat-v1.0&quot;</span><span class="p">)</span>
<span class="linenos">15</span>
<span class="linenos">16</span> <span class="n">outputs</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">prompts</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">)</span>
<span class="linenos">17</span>
<span class="linenos">18</span> <span class="c1"># Print the outputs.</span>
<span class="linenos">19</span> <span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">outputs</span><span class="p">:</span>
<span class="linenos">20</span> <span class="n">prompt</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">prompt</span>
<span class="linenos">21</span> <span class="n">generated_text</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span>
<span class="linenos">22</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Prompt: </span><span class="si">{</span><span class="n">prompt</span><span class="si">!r}</span><span class="s2">, Generated text: </span><span class="si">{</span><span class="n">generated_text</span><span class="si">!r}</span><span class="s2">&quot;</span><span class="p">)</span>
<span class="linenos">23</span>
<span class="linenos">24</span>
<span class="linenos">25</span><span class="c1"># The entry point of the program need to be protected for spawning processes.</span>
<span class="linenos">26</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="linenos">27</span> <span class="n">main</span><span class="p">()</span>
</pre></div>
</div>
<p>You can also directly load TensorRT Model Optimizers <a class="reference external" href="https://huggingface.co/collections/nvidia/model-optimizer-66aa84f7966b3150262481a4">quantized checkpoints on Hugging Face</a> in the LLM constructor.
To learn more about the LLM API, check out the <a class="reference internal" href="llm-api/index.html"><span class="doc std std-doc">API Introduction</span></a> and <a class="reference internal" href="llm-api-examples/index.html"><span class="doc std std-doc">LLM Examples Introduction</span></a>.</p>
</section>
<section id="compile-the-model-into-a-tensorrt-engine">
<span id="quick-start-guide-compile"></span><h2>Compile the Model into a TensorRT Engine<a class="headerlink" href="#compile-the-model-into-a-tensorrt-engine" title="Link to this heading">#</a></h2>
<p>Use the <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama">Llama model definition</a> from the <code class="docutils literal notranslate"><span class="pre">examples/llama</span></code> directory of the GitHub repository.
The model definition is a minimal example that shows some of the optimizations available in TensorRT-LLM.</p>
<div class="highlight-console notranslate"><div class="highlight"><pre><span></span><span class="gp"># </span>From<span class="w"> </span>the<span class="w"> </span>root<span class="w"> </span>of<span class="w"> </span>the<span class="w"> </span>cloned<span class="w"> </span>repository,<span class="w"> </span>start<span class="w"> </span>the<span class="w"> </span>TensorRT-LLM<span class="w"> </span>container
<span class="go">make -C docker release_run LOCAL_USER=1</span>
<span class="gp"># </span>Log<span class="w"> </span><span class="k">in</span><span class="w"> </span>to<span class="w"> </span>huggingface-cli
<span class="gp"># </span>You<span class="w"> </span>can<span class="w"> </span>get<span class="w"> </span>your<span class="w"> </span>token<span class="w"> </span>from<span class="w"> </span>huggingface.co/settings/token
<span class="go">huggingface-cli login --token *****</span>
<span class="gp"># </span>Convert<span class="w"> </span>the<span class="w"> </span>model<span class="w"> </span>into<span class="w"> </span>TensorRT-LLM<span class="w"> </span>checkpoint<span class="w"> </span>format
<span class="go">cd examples/llama</span>
<span class="go">pip install -r requirements.txt</span>
<span class="go">pip install --upgrade transformers # Llama 3.1 requires transformer 4.43.0+ version.</span>
<span class="go">python3 convert_checkpoint.py --model_dir Meta-Llama-3.1-8B-Instruct --output_dir llama-3.1-8b-ckpt</span>
<span class="gp"># </span>Compile<span class="w"> </span>model
<span class="go">trtllm-build --checkpoint_dir llama-3.1-8b-ckpt \</span>
<span class="go"> --gemm_plugin float16 \</span>
<span class="go"> --output_dir ./llama-3.1-8b-engine</span>
</pre></div>
</div>
<p>When you create a model definition with the TensorRT-LLM API, you build a graph of operations from <a class="reference external" href="https://developer.nvidia.com/tensorrt">NVIDIA TensorRT</a> primitives that form the layers of your neural network. These operations map to specific kernels; prewritten programs for the GPU.</p>
<p>In this example, we included the <code class="docutils literal notranslate"><span class="pre">gpt_attention</span></code> plugin, which implements a FlashAttention-like fused attention kernel, and the <code class="docutils literal notranslate"><span class="pre">gemm</span></code> plugin, that performs matrix multiplication with FP32 accumulation. We also called out the desired precision for the full model as FP16, matching the default precision of the weights that you downloaded from Hugging Face. For more information about plugins and quantizations, refer to the <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama">Llama example</a> and <a class="reference internal" href="reference/precision.html#precision"><span class="std std-ref">Numerical Precision</span></a> section.</p>
</section>
<section id="run-the-model">
<h2>Run the Model<a class="headerlink" href="#run-the-model" title="Link to this heading">#</a></h2>
<p>Now that you have the model engine, run the engine and perform inference.</p>
<div class="highlight-console notranslate"><div class="highlight"><pre><span></span><span class="go">python3 ../run.py --engine_dir ./llama-3.1-8b-engine --max_output_len 100 --tokenizer_dir Meta-Llama-3.1-8B-Instruct --input_text &quot;How do I count to nine in French?&quot;</span>
</pre></div>
</div>
</section>
<section id="deploy-with-triton-inference-server">
<h2>Deploy with Triton Inference Server<a class="headerlink" href="#deploy-with-triton-inference-server" title="Link to this heading">#</a></h2>
<p>To create a production-ready deployment of your LLM, use the <a class="reference external" href="https://github.com/triton-inference-server/tensorrtllm_backend">Triton Inference Server backend for TensorRT-LLM</a> to leverage the TensorRT-LLM C++ runtime for rapid inference execution and include optimizations like in-flight batching and paged KV caching. Triton Inference Server with the TensorRT-LLM backend is available as a <a class="reference external" href="https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver/tags">pre-built container through NVIDIA NGC</a>.</p>
<ol class="arabic simple">
<li><p>Clone the TensorRT-LLM backend repository:</p></li>
</ol>
<div class="highlight-console notranslate"><div class="highlight"><pre><span></span><span class="go">cd ..</span>
<span class="go">git clone https://github.com/triton-inference-server/tensorrtllm_backend.git</span>
<span class="go">cd tensorrtllm_backend</span>
</pre></div>
</div>
<ol class="arabic simple" start="2">
<li><p>Refer to <a class="reference external" href="https://github.com/triton-inference-server/tensorrtllm_backend/blob/main/docs/llama.md">End to end workflow to run llama 7b</a> in the TensorRT-LLM backend repository to deploy the model with Triton Inference Server.</p></li>
</ol>
</section>
<section id="next-steps">
<h2>Next Steps<a class="headerlink" href="#next-steps" title="Link to this heading">#</a></h2>
<p>In this Quick Start Guide, you:</p>
<ul class="simple">
<li><p>Installed and built TensorRT-LLM</p></li>
<li><p>Retrieved the model weights</p></li>
<li><p>Compiled and ran the model</p></li>
<li><p>Deployed the model with Triton Inference Server</p></li>
<li><p>As an alternative to deploying the engine with FastAPI-based OpenAI API Server, you can use the <a class="reference external" href="https://nvidia.github.io/TensorRT-LLM/commands/trtllm-serve.html"><code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a> CLI.</p></li>
</ul>
<p>For more examples, refer to:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples">examples/</a> for showcases of how to run a quick benchmark on latest LLMs.</p></li>
</ul>
</section>
<section id="related-information">
<h2>Related Information<a class="headerlink" href="#related-information" title="Link to this heading">#</a></h2>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/performance/perf-best-practices.md">Best Practices Guide</a></p></li>
<li><p><a class="reference external" href="https://nvidia.github.io/TensorRT-LLM/reference/support-matrix.html">Support Matrix</a></p></li>
</ul>
</section>
</section>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
<a class="left-prev"
href="overview.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">Overview</p>
</div>
</a>
<a class="right-next"
href="key-features.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">Key Features</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#prerequisites">Prerequisites</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#llm-api">LLM API</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#compile-the-model-into-a-tensorrt-engine">Compile the Model into a TensorRT Engine</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#run-the-model">Run the Model</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#deploy-with-triton-inference-server">Deploy with Triton Inference Server</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#next-steps">Next Steps</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#related-information">Related Information</a></li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Manage My Privacy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/preferences/start/">Do Not Sell or Share My Data</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2024, NVidia.
<br/>
</p>
</div>
</div>
</div>
</footer>
</body>
</html>