TensorRT-LLMs/tensorrt_llm/models/phi3/config.py
2024-11-12 15:27:49 +08:00

139 lines
6.1 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
from ...layers import MoeConfig
from ...mapping import Mapping
from ..convert_utils import infer_dtype
from ..modeling_utils import PretrainedConfig, QuantConfig
class Phi3Config(PretrainedConfig):
def __init__(self,
*,
rotary_base: float = 10000.0,
rotary_scaling: Optional[dict] = None,
**kwargs):
self.rotary_base = rotary_base
self.rotary_scaling = rotary_scaling
super().__init__(**kwargs)
def to_dict(self):
output = super().to_dict()
# Serialize the fields added in PhiConfig
output['rotary_base'] = self.rotary_base
output['rotary_scaling'] = self.rotary_scaling
return output
@classmethod
def from_hugging_face(
cls,
hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
import transformers
trust_remote_code = kwargs.pop('trust_remote_code', True)
if isinstance(hf_config_or_dir, transformers.PretrainedConfig):
hf_config = hf_config_or_dir
else:
hf_config_dir = str(hf_config_or_dir)
hf_config = transformers.AutoConfig.from_pretrained(
hf_config_dir, trust_remote_code=trust_remote_code)
if hasattr(hf_config, "llm_config"):
hf_config = hf_config.llm_config
num_key_value_heads = getattr(hf_config, "num_key_value_heads",
hf_config.num_attention_heads)
dtype = infer_dtype(dtype, getattr(hf_config, 'torch_dtype', None))
small_variant = hf_config.architectures[0] == "Phi3SmallForCausalLM"
if small_variant:
kwargs['gegelu_limit'] = getattr(hf_config, "gegelu_limit", None)
kwargs['rotary_base'] = hf_config.rope_embedding_base
kwargs['mup_attn_multiplier'] = getattr(hf_config,
"mup_attn_multiplier", None)
kwargs['mup_embedding_multiplier'] = getattr(
hf_config, "mup_embedding_multiplier", None)
kwargs['mup_use_scaling'] = getattr(hf_config, "mup_use_scaling",
None)
kwargs['mup_width_multiplier'] = getattr(hf_config,
"mup_width_multiplier",
None)
kwargs['blocksparse_block_size'] = getattr(
hf_config, "blocksparse_block_size", None)
kwargs['blocksparse_homo_head_pattern'] = getattr(
hf_config, "blocksparse_homo_head_pattern", None)
kwargs['blocksparse_num_local_blocks'] = getattr(
hf_config, "blocksparse_num_local_blocks", None)
kwargs['blocksparse_vertical_stride'] = getattr(
hf_config, "blocksparse_vert_stride", None)
kwargs['dense_attention_every_n_layers'] = getattr(
hf_config, "dense_attention_every_n_layers", None)
kwargs['norm_epsilon'] = hf_config.layer_norm_epsilon
else:
kwargs['rotary_base'] = hf_config.rope_theta
kwargs['norm_epsilon'] = hf_config.rms_norm_eps
moe_variant = hf_config.architectures[0] == "PhiMoEForCausalLM"
if moe_variant:
kwargs.update({
'moe': {
'num_experts': hf_config.num_local_experts,
'top_k': hf_config.num_experts_per_tok,
'normalization_mode':
MoeConfig.ExpertScaleNormalizationMode.SPARSE_MIXER,
'sparse_mixer_epsilon': hf_config.router_jitter_noise,
},
'attention_bias': hf_config.attention_bias
})
kwargs['position_embedding_type'] = 'rope_gpt_neox'
if hf_config.max_position_embeddings >= 128000:
kwargs[
'original_max_position_embeddings'] = hf_config.original_max_position_embeddings
kwargs['position_embedding_type'] = "long_rope"
kwargs['longrope_scaling_short_factors'] = hf_config.rope_scaling[
"short_factor"]
kwargs['longrope_scaling_long_factors'] = hf_config.rope_scaling[
"long_factor"]
if small_variant or moe_variant:
kwargs['longrope_long_mscale'] = hf_config.rope_scaling[
"long_mscale"]
kwargs['longrope_short_mscale'] = hf_config.rope_scaling[
"short_mscale"]
return cls(architecture=hf_config.architectures[0],
dtype=dtype,
num_hidden_layers=hf_config.num_hidden_layers,
num_attention_heads=hf_config.num_attention_heads,
hidden_size=hf_config.hidden_size,
intermediate_size=hf_config.intermediate_size,
num_key_value_heads=num_key_value_heads,
vocab_size=hf_config.vocab_size,
max_position_embeddings=hf_config.max_position_embeddings,
hidden_act="swiglu"
if hf_config.hidden_act == 'silu' else hf_config.hidden_act,
mapping=mapping,
quantization=quant_config,
**kwargs)