TensorRT-LLMs/tensorrt_llm/scaffolding/controller.py
Kaiyu Xie 2631f21089
Update (#2978)
Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2025-03-23 16:39:35 +08:00

165 lines
6.0 KiB
Python

import copy
from abc import ABC
from enum import Enum
from typing import List, Tuple
from tensorrt_llm.scaffolding.math_utils import get_digit_majority_vote_result
from tensorrt_llm.scaffolding.task import (GenerationTask, RewardTask,
ScaffoldingOutput, Task)
class ScaffoldingOutput:
def __init__(self):
self.output_str = None
# reserved for customized controller
self.customized_output = None
class Controller(ABC):
def clone(self):
return copy.deepcopy(self)
def generate(self, prompt: str, **kwargs) -> ScaffoldingOutput:
task = GenerationTask.create_from_prompt(prompt)
yield from self.process([task], **kwargs)
return task.create_scaffolding_output()
def process(self, tasks: List[Task], **kwargs):
raise NotImplementedError
# Controller runs multiple generation tasks.
class NativeGenerationController(Controller):
class WorkerTag(Enum):
GENERATION = "generation"
def __init__(self, custom_sampling_params: dict = None):
super().__init__()
self.custom_sampling_params = copy.deepcopy(custom_sampling_params)
def process(self, tasks: List[Task], **kwargs):
for task in tasks:
if not isinstance(task, GenerationTask):
raise ValueError(
"NativeGenerationController requires exactly one GenerationTask"
)
for task in tasks:
task.worker_tag = self.WorkerTag.GENERATION
if kwargs.get("custom_sampling_params"):
task.custom_sampling_params = kwargs.get(
"custom_sampling_params")
elif self.custom_sampling_params:
task.custom_sampling_params = self.custom_sampling_params
yield tasks
# Controller runs multiple reward tasks.
class NativeRewardController(Controller):
class WorkerTag(Enum):
REWARD = "reward"
def process(self, tasks: List[Task], **kwargs):
for task in tasks:
if not isinstance(task, RewardTask):
raise ValueError(
"NativeRewardController requires exactly one RewardTask")
for task in tasks:
task.worker_tag = self.WorkerTag.REWARD
yield tasks
# Controller runs a single generation task with majority vote.
class MajorityVoteController(Controller):
def __init__(self,
generation_controller: Controller,
default_sample_num: int = 1):
super().__init__()
self.generation_controller = generation_controller
self.default_sample_num = default_sample_num
def clone(self):
# As we don't know the behavior of the generation_controller's clone method,
# we explicitly call clone method instead of simply using deepcopy.
generation_controller = self.generation_controller.clone()
return MajorityVoteController(generation_controller,
self.default_sample_num)
def process(self, tasks: List[Task], **kwargs):
assert len(tasks) == 1 and isinstance(tasks[0], GenerationTask), \
"MajorityVoteController requires exactly one GenerationTask"
sample_num = kwargs.get("sample_num", self.default_sample_num)
generation_tasks = [copy.deepcopy(tasks[0]) for _ in range(sample_num)]
yield from self.generation_controller.process(
generation_tasks, **kwargs.get("generation_kwargs", {}))
candidates = [task.output_str for task in generation_tasks]
result = self.majority_vote(candidates,
**kwargs.get("majority_vote_kwargs", {}))
assert (isinstance(result, str))
# The task returned by majority vote does not have output_tokens and logits.
tasks[0].output_str = result
def majority_vote(self, candidates: List[str], **kwargs) -> str:
return get_digit_majority_vote_result(candidates)
# Controller runs a single generation task with best of N.
class BestOfNController(Controller):
def __init__(self,
generation_controller: Controller,
reward_controller: Controller,
default_sample_num: int = 1):
super().__init__()
self.generation_controller = generation_controller
self.reward_controller = reward_controller
self.default_sample_num = default_sample_num
def clone(self):
generation_controller = self.generation_controller.clone()
reward_controller = self.reward_controller.clone()
return BestOfNController(generation_controller, reward_controller,
self.default_sample_num)
def process(self, tasks: List[Task], **kwargs):
assert len(tasks) == 1 and isinstance(tasks[0], GenerationTask), \
"BestOfNController requires exactly one GenerationTask"
sample_num = kwargs.get("sample_num", self.default_sample_num)
generation_tasks = [tasks[0].deepcopy() for _ in range(sample_num)]
yield from self.generation_controller.process(
generation_tasks, **kwargs.get("generation_kwargs"))
reward_tasks = [
RewardTask.create_from_generation_task(generation_task)
for generation_task in generation_tasks
]
yield from self.reward_controller.process(reward_tasks,
**kwargs.get("reward_kwargs"))
# may used for upper layer controllers
self.best_generation_task, self.best_reward_task = (self.select_best(
generation_tasks, reward_tasks, **kwargs.get("select_best_kwargs")))
tasks[0] = self.best_generation_task
def select_best(self, generation_tasks: List[GenerationTask],
reward_tasks: List[RewardTask],
**kwargs) -> Tuple[GenerationTask, RewardTask]:
max_reward_value_index = reward_tasks.index(
max(reward_tasks, key=lambda x: x.reward_value))
return generation_tasks[max_reward_value_index], reward_tasks[
max_reward_value_index]