mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
85 lines
3.3 KiB
C++
85 lines
3.3 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/opUtils.h"
|
|
#include "tensorrt_llm/kernels/renormMoeRoutingKernels.h"
|
|
#include "tensorrt_llm/runtime/torchUtils.h"
|
|
|
|
namespace th = torch;
|
|
namespace tl = tensorrt_llm;
|
|
namespace tk = tensorrt_llm::kernels;
|
|
|
|
namespace torch_ext
|
|
{
|
|
|
|
std::tuple<at::Tensor, at::Tensor> renorm_moe_routing_op(th::Tensor const& router_logits, int64_t topk)
|
|
{
|
|
auto data_type = router_logits.scalar_type();
|
|
auto input_size = router_logits.sizes();
|
|
int64_t num_tokens = input_size[0];
|
|
int64_t num_experts = input_size[1];
|
|
TORCH_CHECK(input_size.size() == 2, "router_logits must be a 2D Tensor");
|
|
TORCH_CHECK(topk <= 8, "topk should be smaller than or equal to 8 for now"); //@todo: remove this restriction later
|
|
TORCH_CHECK(num_experts <= 128, "expert number should be smaller than or equal to 128 for now");
|
|
|
|
th::Tensor topk_values = th::empty({num_tokens, topk}, th::dtype(torch::kFloat32).device(torch::kCUDA));
|
|
th::Tensor topk_indices = th::empty({num_tokens, topk}, th::dtype(torch::kInt32).device(torch::kCUDA));
|
|
|
|
auto stream = at::cuda::getCurrentCUDAStream(router_logits.get_device());
|
|
|
|
switch (data_type)
|
|
{
|
|
case torch::kFloat32:
|
|
// Handle Float32
|
|
tk::invokeRenormMoeRouting<float, float, int32_t>(reinterpret_cast<float*>(router_logits.mutable_data_ptr()),
|
|
reinterpret_cast<float*>(topk_values.mutable_data_ptr()),
|
|
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()), num_tokens, num_experts, topk, stream);
|
|
break;
|
|
case torch::kBFloat16:
|
|
// Handle BFloat16
|
|
tk::invokeRenormMoeRouting<__nv_bfloat16, float, int32_t>(
|
|
reinterpret_cast<__nv_bfloat16*>(router_logits.mutable_data_ptr()),
|
|
reinterpret_cast<float*>(topk_values.mutable_data_ptr()),
|
|
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()), num_tokens, num_experts, topk, stream);
|
|
break;
|
|
case torch::kHalf:
|
|
// Handle Half
|
|
tk::invokeRenormMoeRouting<half, float, int32_t>(reinterpret_cast<half*>(router_logits.mutable_data_ptr()),
|
|
reinterpret_cast<float*>(topk_values.mutable_data_ptr()),
|
|
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()), num_tokens, num_experts, topk, stream);
|
|
break;
|
|
default:
|
|
// Handle other data types
|
|
throw std::invalid_argument("Invalid dtype, only supports float32, float16 and bfloat16");
|
|
break;
|
|
}
|
|
return {topk_indices, topk_values};
|
|
}
|
|
|
|
} // namespace torch_ext
|
|
|
|
TORCH_LIBRARY_FRAGMENT(trtllm, m)
|
|
{
|
|
m.def(
|
|
"renorm_moe_routing_op(Tensor router_logits, int topk"
|
|
") -> (Tensor, Tensor)");
|
|
}
|
|
|
|
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
|
|
{
|
|
m.impl("renorm_moe_routing_op", &torch_ext::renorm_moe_routing_op);
|
|
}
|