mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Starrick Liu <73152103+StarrickLiu@users.noreply.github.com>
359 lines
14 KiB
Python
359 lines
14 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import math
|
|
from typing import Optional
|
|
|
|
from .._common import default_net
|
|
from ..functional import (ACT2FN, Tensor, concat, conv2d, gather, mamba_conv1d,
|
|
permute, selective_scan, shape, split, view)
|
|
from ..module import Module
|
|
from ..parameter import Parameter
|
|
from .linear import ColumnLinear, Linear, RowLinear
|
|
from .normalization import RmsNorm
|
|
|
|
|
|
class MambaConv1d(Module):
|
|
|
|
def __init__(self,
|
|
d_inner,
|
|
d_conv=4,
|
|
pre_stride=0,
|
|
post_stride=0,
|
|
dtype=None,
|
|
apply_silu=True):
|
|
super().__init__()
|
|
self.d_inner = d_inner
|
|
self.d_conv = d_conv
|
|
self.pre_stride = pre_stride
|
|
self.post_stride = post_stride
|
|
self.dtype = dtype
|
|
self.weight = Parameter(shape=(self.d_inner, 1, self.d_conv, 1),
|
|
dtype=dtype)
|
|
self.bias = Parameter(shape=(self.d_inner, ), dtype=dtype)
|
|
self.apply_silu = apply_silu
|
|
|
|
def forward(self,
|
|
x: Tensor,
|
|
conv_state: Tensor,
|
|
host_request_types: Tensor,
|
|
last_token_ids: Tensor,
|
|
host_context_lengths: Optional[Tensor] = None,
|
|
slot_mapping: Optional[Tensor] = None,
|
|
conv_indices: Optional[Tensor] = None):
|
|
'''
|
|
Parameters:
|
|
x: [B, L, D] or [T, D]
|
|
conv_state: [B, W, D] or [1] of type int64 for paged state
|
|
host_request_types: [B]
|
|
last_token_ids: [B]
|
|
host_context_lengths: [B]
|
|
slot_mapping: [B]
|
|
conv_indices: [B]
|
|
'''
|
|
if default_net().plugin_config.mamba_conv1d_plugin:
|
|
transposed_weight = permute(
|
|
view(self.weight.value, shape=[self.d_inner, 1, self.d_conv]),
|
|
(1, 2, 0))
|
|
x_conv, conv_state = mamba_conv1d(
|
|
x, conv_state, transposed_weight, self.bias.value,
|
|
host_request_types, last_token_ids, self.d_inner, self.d_conv,
|
|
self.dtype, self.pre_stride, self.post_stride,
|
|
host_context_lengths, slot_mapping, self.apply_silu)
|
|
else:
|
|
assert not default_net().plugin_config.paged_state
|
|
assert len(
|
|
x.shape
|
|
) == 3, "remove_input_padding is not supported by OOTB for Mamba."
|
|
if self.pre_stride > 0:
|
|
_, x = split(x,
|
|
[self.pre_stride, self.d_inner + self.post_stride],
|
|
dim=-1)
|
|
if self.post_stride > 0:
|
|
x, _ = split(x, [self.d_inner, self.post_stride], dim=-1)
|
|
x = x.permute([0, 2, 1])
|
|
|
|
# In context phase, conv_state is a zero tensor, and it is used for padding
|
|
# In generation phase, conv_state is a tensor of the past x
|
|
x_pad = concat([conv_state, x], dim=2)
|
|
|
|
# Update conv_state
|
|
conv_state = gather(x_pad, 2, conv_indices)
|
|
|
|
# Convolution
|
|
x_pad = x_pad.view(
|
|
concat([shape(x_pad, 0),
|
|
shape(x_pad, 1),
|
|
shape(x_pad, 2), 1]))
|
|
x_conv = conv2d(x_pad,
|
|
self.weight.value,
|
|
self.bias.value,
|
|
groups=self.d_inner)
|
|
if self.apply_silu:
|
|
x_conv = ACT2FN['silu'](x_conv)
|
|
x_conv = x_conv.view(
|
|
concat([shape(x_conv, 0),
|
|
shape(x_conv, 1),
|
|
shape(x_conv, 2)]))
|
|
|
|
# Get dt, B and C
|
|
x_conv = x_conv.permute([0, 2, 1])
|
|
return x_conv, conv_state
|
|
|
|
|
|
class Mamba(Module):
|
|
|
|
def __init__(self,
|
|
d_model,
|
|
d_inner,
|
|
d_state=16,
|
|
d_conv=4,
|
|
dt_rank="auto",
|
|
bias=False,
|
|
dtype=None):
|
|
super().__init__()
|
|
self.d_model = d_model
|
|
self.d_state = d_state
|
|
self.d_conv = d_conv
|
|
self.d_inner = d_inner
|
|
self.dt_rank = math.ceil(self.d_model /
|
|
16) if dt_rank == "auto" else dt_rank
|
|
self.dtype = dtype
|
|
|
|
self.A = Parameter(shape=(self.d_state, self.d_inner), dtype="float32")
|
|
|
|
self.D = Parameter(shape=(self.d_inner, ), dtype="float32")
|
|
self.dt_bias = Parameter(shape=(self.d_inner, ), dtype="float32")
|
|
|
|
self.in_proj_x = Linear(self.d_model,
|
|
self.d_inner,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
gather_output=False)
|
|
self.in_proj_z = Linear(self.d_model,
|
|
self.d_inner,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
gather_output=False)
|
|
|
|
self.conv1d = MambaConv1d(self.d_inner, self.d_conv, dtype=self.dtype)
|
|
|
|
self.x_proj = Linear(self.d_inner,
|
|
self.dt_rank + self.d_state * 2,
|
|
bias=False,
|
|
dtype=dtype,
|
|
gather_output=False)
|
|
|
|
self.dt_proj = Linear(self.dt_rank,
|
|
self.d_inner,
|
|
bias=False,
|
|
dtype=dtype,
|
|
gather_output=False,
|
|
pad_lda=self.d_state * 2)
|
|
|
|
self.out_proj = Linear(self.d_inner,
|
|
self.d_model,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
gather_output=False)
|
|
|
|
def forward(self,
|
|
hidden_states: Tensor,
|
|
conv_state: Tensor,
|
|
ssm_state: Tensor,
|
|
host_request_types: Tensor,
|
|
last_token_ids: Tensor,
|
|
host_context_lengths: Optional[Tensor] = None,
|
|
slot_mapping: Optional[Tensor] = None,
|
|
conv_indices: Optional[Tensor] = None):
|
|
'''
|
|
Parameters:
|
|
hidden_states: [B, L, D] or [T, D]
|
|
conv_state: [B, W, D] or [1] of type int64 for paged state
|
|
ssm_state: [B, N, D] or [1] of type int64 for paged state
|
|
host_request_types: [B]
|
|
last_token_ids: [B]
|
|
host_context_lengths: [B]
|
|
slot_mapping: [B]
|
|
conv_indices: [B]
|
|
'''
|
|
# in_proj
|
|
x = self.in_proj_x(hidden_states)
|
|
z = self.in_proj_z(hidden_states)
|
|
|
|
x_conv, conv_state = self.conv1d(x, conv_state, host_request_types,
|
|
last_token_ids, host_context_lengths,
|
|
slot_mapping, conv_indices)
|
|
|
|
# Get dt, B and C
|
|
x_dbl = self.x_proj(x_conv)
|
|
if default_net().plugin_config.gemm_plugin:
|
|
dt = self.dt_proj(x_dbl)
|
|
else:
|
|
dt, _ = split(x_dbl, [self.dt_rank, self.d_state * 2], dim=-1)
|
|
dt = self.dt_proj(dt)
|
|
|
|
# selective scan
|
|
y, ssm_state = selective_scan(x_conv,
|
|
ssm_state,
|
|
dt,
|
|
self.dt_bias.value,
|
|
self.A.value,
|
|
x_dbl,
|
|
self.D.value,
|
|
host_request_types,
|
|
last_token_ids,
|
|
self.d_inner,
|
|
self.d_state,
|
|
self.dt_rank,
|
|
delta_softplus=True,
|
|
dtype=self.dtype,
|
|
z=z,
|
|
host_context_lengths=host_context_lengths,
|
|
slot_mapping=slot_mapping)
|
|
# out_proj
|
|
out = self.out_proj(y)
|
|
return out, conv_state, ssm_state
|
|
|
|
|
|
class Mamba2(Module):
|
|
|
|
def __init__(self,
|
|
d_model,
|
|
d_inner,
|
|
d_state=16,
|
|
d_conv=4,
|
|
headdim=64,
|
|
ngroups=1,
|
|
chunk_size=256,
|
|
bias=False,
|
|
rmsnorm=True,
|
|
dtype=None,
|
|
tp_group=None,
|
|
tp_size=1):
|
|
super().__init__()
|
|
self.d_model = d_model
|
|
self.d_state = d_state
|
|
self.d_conv = d_conv
|
|
assert d_inner % tp_size == 0
|
|
self.d_inner = d_inner // tp_size
|
|
self.headdim = headdim
|
|
assert ngroups % tp_size == 0
|
|
self.ngroups = ngroups // tp_size
|
|
self.chunk_size = chunk_size
|
|
self.rmsnorm = rmsnorm
|
|
self.dtype = dtype
|
|
assert d_inner % headdim == 0
|
|
nheads = d_inner // headdim
|
|
assert nheads % tp_size == 0
|
|
self.nheads = nheads // tp_size
|
|
# conv1d needs alignment to 8 fp16s
|
|
self.pad_ldc = (self.nheads + 7) // 8 * 8 - self.nheads
|
|
pad_ldc = self.pad_ldc * tp_size
|
|
|
|
self.A = Parameter(shape=(self.nheads, ), dtype="float32")
|
|
self.D = Parameter(shape=(self.nheads, ), dtype="float32")
|
|
self.dt_bias = Parameter(shape=(self.nheads, ), dtype="float32")
|
|
|
|
d_in_proj = 2 * d_inner + 2 * ngroups * d_state + nheads
|
|
self.in_proj = ColumnLinear(d_model,
|
|
d_in_proj,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
gather_output=False,
|
|
pad_ldc=pad_ldc)
|
|
|
|
self.conv_dim = (d_inner + 2 * ngroups * d_state) // tp_size
|
|
self.conv1d = MambaConv1d(self.conv_dim,
|
|
self.d_conv,
|
|
pre_stride=self.d_inner,
|
|
post_stride=self.nheads + self.pad_ldc,
|
|
dtype=self.dtype)
|
|
|
|
if rmsnorm:
|
|
self.norm = RmsNorm(normalized_shape=self.d_inner,
|
|
num_groups=self.ngroups,
|
|
eps=1e-5,
|
|
dtype=dtype)
|
|
|
|
self.out_proj = RowLinear(d_inner,
|
|
d_model,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size)
|
|
|
|
def forward(self,
|
|
hidden_states: Tensor,
|
|
conv_state: Tensor,
|
|
ssm_state: Tensor,
|
|
host_request_types: Tensor,
|
|
last_token_ids: Tensor,
|
|
host_context_lengths: Optional[Tensor] = None,
|
|
slot_mapping: Optional[Tensor] = None,
|
|
conv_indices: Optional[Tensor] = None):
|
|
'''
|
|
Parameters:
|
|
hidden_states: [B, L, D] or [T, D]
|
|
conv_state: [B, W, D_conv] or [1] of type int64 for paged state
|
|
ssm_state: [B, H, N, D] or [1] of type int64 for paged state
|
|
host_request_types: [B]
|
|
last_token_ids: [B]
|
|
host_context_lengths: [B]
|
|
slot_mapping: [B]
|
|
conv_indices: [B]
|
|
'''
|
|
# in_proj
|
|
zxbcdt = self.in_proj(hidden_states)
|
|
|
|
# conv1d
|
|
xbc_conv, conv_state = self.conv1d(zxbcdt, conv_state,
|
|
host_request_types, last_token_ids,
|
|
host_context_lengths, slot_mapping,
|
|
conv_indices)
|
|
|
|
# mamba scan
|
|
y, ssm_state = selective_scan(xbc_conv,
|
|
ssm_state,
|
|
zxbcdt,
|
|
self.dt_bias.value,
|
|
self.A.value,
|
|
xbc_conv,
|
|
self.D.value,
|
|
host_request_types,
|
|
last_token_ids,
|
|
self.d_inner,
|
|
self.d_state,
|
|
dt_rank=0,
|
|
delta_softplus=True,
|
|
dtype=self.dtype,
|
|
z=zxbcdt,
|
|
host_context_lengths=host_context_lengths,
|
|
slot_mapping=slot_mapping,
|
|
nheads=self.nheads,
|
|
ngroups=self.ngroups,
|
|
chunk_size=self.chunk_size,
|
|
mamba_version='Mamba2')
|
|
|
|
# norm
|
|
if self.rmsnorm:
|
|
y = self.norm(y)
|
|
|
|
# out_proj
|
|
out = self.out_proj(y)
|
|
return out, conv_state, ssm_state
|