TensorRT-LLMs/tensorrt_llm/models/baichuan/config.py
2024-11-12 15:27:49 +08:00

93 lines
3.8 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
from ...logger import logger
from ...mapping import Mapping
from ..convert_utils import infer_dtype
from ..modeling_utils import PretrainedConfig, QuantConfig
class BaichuanConfig(PretrainedConfig):
def __init__(self, model_version: Optional[str] = None, **kwargs):
super().__init__(**kwargs)
if model_version is None:
model_version = BaichuanConfig.guess_model_version(self)
self.model_version = model_version
def to_dict(self):
output = super().to_dict()
# Serialize the fields added in BaichuanConfig
output['model_version'] = self.model_version
return output
@staticmethod
def guess_model_version(
config: Union['transformers.PretrainedConfig',
'BaichuanConfig']) -> str:
logger.warning(
"Model version is not set, trying to guess from loaded config")
size = '7' if config.num_attention_heads == 32 else '13'
version = '1' if config.vocab_size == 64000 else '2'
return f'v{version}_{size}b'
@classmethod
def from_hugging_face(
cls,
hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
import transformers
trust_remote_code = kwargs.pop('trust_remote_code', True)
if isinstance(hf_config_or_dir, transformers.PretrainedConfig):
hf_config = hf_config_or_dir
else:
hf_config_dir = str(hf_config_or_dir)
hf_config = transformers.AutoConfig.from_pretrained(
hf_config_dir, trust_remote_code=trust_remote_code)
model_version = kwargs.pop('model_version', None)
if model_version is None:
model_version = BaichuanConfig.guess_model_version(hf_config)
if model_version == 'v1_7b' or model_version == 'v2_7b':
position_embedding_type = 'rope_gpt_neox'
max_position_embeddings = hf_config.max_position_embeddings
else:
position_embedding_type = 'alibi'
max_position_embeddings = hf_config.model_max_length
dtype = infer_dtype(dtype, getattr(hf_config, 'torch_dtype', None))
return cls(architecture='BaichuanForCausalLM',
dtype=dtype,
vocab_size=hf_config.vocab_size,
max_position_embeddings=max_position_embeddings,
hidden_size=hf_config.hidden_size,
num_hidden_layers=hf_config.num_hidden_layers,
num_attention_heads=hf_config.num_attention_heads,
num_key_value_heads=hf_config.num_attention_heads,
hidden_act=hf_config.hidden_act,
intermediate_size=hf_config.intermediate_size,
norm_epsilon=hf_config.rms_norm_eps,
position_embedding_type=position_embedding_type,
model_version=model_version,
mapping=mapping,
quantization=quant_config,
**kwargs)