TensorRT-LLMs/tensorrt_llm/models/deepseek_v2/config.py
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

148 lines
6.3 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
from transformers import AutoConfig
from ...layers import MoeConfig
from ...mapping import Mapping
from ..modeling_utils import PretrainedConfig, QuantConfig
class DeepSeekV2Config(PretrainedConfig):
def __init__(self,
*,
rotary_base: float = 10000.0,
rotary_scaling: Optional[dict] = None,
moe: Optional[Union[MoeConfig, dict]] = None,
**kwargs):
self.rotary_base = rotary_base
self.rotary_scaling = rotary_scaling
if isinstance(moe, dict):
moe = MoeConfig.from_dict(moe)
assert isinstance(moe,
MoeConfig), "moe must be a MoeConfig or a dictionary"
self.moe = moe.validate()
super().__init__(**kwargs)
def to_dict(self):
output = super().to_dict()
# Serialize the fields added in DeepSeekV2Config
output['rotary_base'] = self.rotary_base
output['rotary_scaling'] = self.rotary_scaling
output['moe'] = self.moe.to_dict()
return output
@classmethod
def from_hugging_face(
cls,
hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
import transformers
trust_remote_code = kwargs.pop('trust_remote_code', True)
if isinstance(hf_config_or_dir, transformers.PretrainedConfig):
hf_config = hf_config_or_dir
else:
hf_config_dir = str(hf_config_or_dir)
hf_config = AutoConfig.from_pretrained(
hf_config_dir, trust_remote_code=trust_remote_code)
moe_routed_scaling_factor = hf_config.routed_scaling_factor
moe_top_k = hf_config.num_experts_per_tok
assert moe_routed_scaling_factor > 0, 'routed_scaling_factor should be greater than 0'
if hf_config.topk_method == 'group_limited_greedy':
if moe_top_k > 1 and hf_config.norm_topk_prob:
moe_renorm_mode = MoeConfig.ExpertScaleNormalizationMode.DEVICE_LIMITED_RENORM
else:
moe_renorm_mode = MoeConfig.ExpertScaleNormalizationMode.DEVICE_LIMITED
elif hf_config.topk_method == 'greedy':
assert moe_routed_scaling_factor == 1.0, 'The combination of topk_method == greedy and routed_scaling_factor != 1.0 is not supported'
if moe_top_k > 1 and hf_config.norm_topk_prob:
moe_renorm_mode = MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE
else:
moe_renorm_mode = MoeConfig.ExpertScaleNormalizationMode.NONE
else:
raise AssertionError(
f'Unsupported topk_method in hf_config: {hf_config.topk_method}'
)
rotary_scaling = None
if hf_config.rope_scaling is not None:
rotary_scaling = {
'beta_fast':
hf_config.rope_scaling['beta_fast'],
'beta_slow':
hf_config.rope_scaling['beta_slow'],
'factor':
hf_config.rope_scaling['factor'],
'mscale':
hf_config.rope_scaling['mscale'],
'mscale_all_dim':
hf_config.rope_scaling['mscale_all_dim'],
'original_max_position_embeddings':
hf_config.rope_scaling['original_max_position_embeddings'],
'type':
hf_config.rope_scaling['type']
}
moe_config = MoeConfig(
num_experts=hf_config.n_routed_experts,
shared_expert_intermediate_size=hf_config.n_shared_experts *
hf_config.moe_intermediate_size,
top_k=hf_config.num_experts_per_tok,
normalization_mode=moe_renorm_mode,
device_limited_n_group=hf_config.n_group,
device_limited_topk_group=hf_config.topk_group,
device_limited_routed_scaling_factor=hf_config.routed_scaling_factor
)
moe_config.validate()
return cls(architecture=hf_config.architectures[0],
dtype=dtype,
num_hidden_layers=hf_config.num_hidden_layers,
num_attention_heads=hf_config.num_attention_heads,
hidden_size=hf_config.hidden_size,
intermediate_size=hf_config.intermediate_size,
num_key_value_heads=hf_config.num_key_value_heads,
vocab_size=hf_config.vocab_size,
position_embedding_type='rope_gpt_neox',
max_position_embeddings=hf_config.max_position_embeddings,
hidden_act='swiglu',
norm_epsilon=hf_config.rms_norm_eps,
rotary_base=hf_config.rope_theta,
rotary_scaling=rotary_scaling,
moe_inter_size=hf_config.moe_intermediate_size,
moe=moe_config,
mapping=mapping,
quantization=quant_config,
kv_lora_rank=hf_config.kv_lora_rank,
q_lora_rank=hf_config.q_lora_rank,
qk_nope_head_dim=hf_config.qk_nope_head_dim,
qk_rope_head_dim=hf_config.qk_rope_head_dim,
v_head_dim=hf_config.v_head_dim,
topk_method=hf_config.topk_method,
first_k_dense_replace=hf_config.first_k_dense_replace,
moe_layer_freq=hf_config.moe_layer_freq,
scoring_func=hf_config.scoring_func,
**kwargs)