TensorRT-LLMs/cpp/tests/unit_tests/layers/dynamicDecodeLayerTest.h
2025-10-27 13:12:31 -04:00

182 lines
6.8 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <gtest/gtest.h>
#include <memory>
#include "tensorrt_llm/layers/dynamicDecodeLayer.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/executor/types.h"
namespace tensorrt_llm::tests::layers::sampling
{
struct TestSamplingParams
{
std::vector<runtime::SizeType32> topKs;
std::vector<float> topPs;
std::vector<float> temperatures;
std::vector<float> repetitionPenalties;
std::vector<float> presencePenalties;
std::vector<float> frequencyPenalties;
std::vector<runtime::SizeType32> promptIgnoreLengths;
std::vector<runtime::SizeType32> minLengths;
std::vector<float> decay;
std::vector<float> minTopP;
std::vector<runtime::TokenIdType> topPResetIds;
std::vector<std::vector<std::vector<runtime::TokenIdType>>> badWords;
std::vector<std::vector<std::vector<runtime::TokenIdType>>> stopWords;
std::vector<runtime::SizeType32> repeatNGramSizes;
bool useBias{false};
std::optional<executor::DecodingMode> decodingMode;
// Medusa setup
std::optional<runtime::SizeType32> maxNumMedusaHeads{std::nullopt};
std::optional<std::vector<std::vector<runtime::SizeType32>>> topKMedusaHeads{std::nullopt};
std::optional<std::vector<runtime::SizeType32>> tokensPerStep{std::nullopt};
std::optional<std::vector<std::vector<tensorrt_llm::runtime::SizeType32>>> paths;
std::optional<std::vector<std::vector<tensorrt_llm::runtime::TokenIdType>>> outputIds;
};
template <typename T>
class DynamicDecodeLayerTest : public testing::Test
{
private:
void SetUp() override;
using TensorPtr = tensorrt_llm::runtime::ITensor::SharedPtr;
using TensorConstPtr = tensorrt_llm::runtime::ITensor::SharedConstPtr;
using BufferPtr = tensorrt_llm::runtime::IBuffer::SharedPtr;
static uint64_t const mMaxSeed{64};
runtime::SizeType32 const mBatchSize{6};
runtime::SizeType32 const mMaxBatchSize{2 * mBatchSize};
runtime::SizeType32 const mBeamWidth{1};
runtime::SizeType32 const mBatchBeam{mBatchSize * mBeamWidth};
runtime::SizeType32 const mVocabSize{9};
runtime::SizeType32 const mVocabSizePadded{mVocabSize};
runtime::SizeType32 const mMaxInputLen{0}; // has no effect.
runtime::SizeType32 const mMaxOutputLen{4};
runtime::SizeType32 const mMaxSeqLen{mMaxInputLen + mMaxOutputLen};
runtime::SizeType32 const mSinkTokenLength{0};
runtime::TokenIdType mEndId = mVocabSize;
runtime::SizeType32 mMaxTokensPerStep{1};
runtime::SizeType32 mMaxMedusaHeads{0};
bool mUseLogitsVec{false};
TensorPtr mLogitsDevice;
TensorPtr mRuntimeLogitsHost;
TensorPtr mLogitsRefHost;
TensorPtr mContextLengthDevice;
TensorPtr mSeqLengthsDevice;
TensorPtr mFinishedDevice;
TensorPtr mFinishedSumDevice;
TensorPtr mOutputIdsDevice;
TensorPtr mNewTokens;
TensorPtr mEndIdsDevice;
TensorPtr mBatchSlots;
TensorPtr mBadWordsLens;
TensorPtr mBadWords;
TensorPtr mBadWordsPtrs;
TensorPtr mStopWordsLens;
TensorPtr mStopWords;
TensorPtr mStopWordsPtrs;
TensorPtr mEmbeddingBiasHost;
TensorPtr mEmbeddingBiasDevice;
TensorPtr mRefLogProbsHost;
TensorPtr mOutputLogProbsDevice;
TensorPtr mOutputLogProbsTiledDevice;
TensorPtr mCumLogProbsDevice;
// Medusa tensors
TensorPtr mPathsDevice;
TensorPtr mTreeIdsDevice;
TensorPtr mAcceptedLengths;
TensorPtr mAcceptedLengthCumSumDevice;
TensorPtr mPackedPathsDevice;
TensorPtr mMedusaLogitsDevice;
TensorPtr mNextDraftTokensDevice;
TensorPtr mTokensPerStepDevice;
std::vector<TensorConstPtr> mLogitsVec;
std::shared_ptr<tensorrt_llm::runtime::CudaStream> mStream;
std::shared_ptr<tensorrt_llm::runtime::BufferManager> mBufferManager;
std::unique_ptr<tensorrt_llm::layers::DynamicDecodeLayer<T>> mDecodeLayer;
std::shared_ptr<runtime::DecodingLayerWorkspace> mDecodingWorkspace;
std::vector<T> mTestLogitsInit;
runtime::SizeType32 mMaxBadWordsLen{0};
runtime::SizeType32 mMaxStopWordsLen{0};
executor::DecodingMode mDecodingMode = executor::DecodingMode::Auto();
private:
void allocateMedusaData(TestSamplingParams const& params);
void setup(uint64_t seed, TestSamplingParams const& params);
runtime::SizeType32 getMaxWordsLen(std::vector<std::vector<std::vector<runtime::TokenIdType>>> const& inputWords);
void initXWordsTensors(runtime::SizeType32* batchSlotsPtr, runtime::TokenIdType* wordsData,
runtime::TokenIdType** wordsPtr, runtime::SizeType32* wordsLenData, runtime::SizeType32 maxWordsLen,
std::vector<std::vector<std::vector<runtime::TokenIdType>>> const& inputWords);
std::shared_ptr<tensorrt_llm::layers::DecodingInputs> createInputTensors(runtime::SizeType32 step);
std::shared_ptr<tensorrt_llm::layers::BaseDecodingOutputs> createOutputTensors();
void batchCopy(runtime::SizeType32 step);
bool checkResult(runtime::TokenIdType* outputIds, std::vector<std::set<runtime::TokenIdType>> const& expectedIds,
runtime::SizeType32* seqLens, runtime::SizeType32 leadingDim, runtime::SizeType32 stride,
runtime::SizeType32 step, bool outputIdsTransposed = false, runtime::SizeType32 strideTransposed = 0);
void fillRefLogits(runtime::SizeType32 const* seqLenHost,
std::vector<std::set<runtime::TokenIdType>> const& expectedOutputIds, runtime::SizeType32 step);
void createMedusaInputs(std::shared_ptr<tensorrt_llm::layers::DecodingInputs>& baseInputs);
void createMedusaOutputs(std::shared_ptr<tensorrt_llm::layers::BaseDecodingOutputs>& baseOutputs);
public:
void runTest(std::vector<std::set<runtime::TokenIdType>> const& expectedOutputIds, TestSamplingParams const& params,
runtime::TokenIdType endId = -1);
void allocateData(TestSamplingParams const& params, runtime::TokenIdType endId = -1);
void runTestImpl(std::vector<std::set<runtime::TokenIdType>> const& expectedOutputIds,
TestSamplingParams const& params, runtime::TokenIdType endId = -1);
};
typedef testing::Types<float, half> FloatAndHalfTypes;
} // namespace tensorrt_llm::tests::layers::sampling