mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
182 lines
6.8 KiB
C++
182 lines
6.8 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <memory>
|
|
|
|
#include "tensorrt_llm/layers/dynamicDecodeLayer.h"
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/cudaStream.h"
|
|
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/common.h"
|
|
#include "tensorrt_llm/runtime/cudaStream.h"
|
|
|
|
#include "tensorrt_llm/executor/types.h"
|
|
|
|
namespace tensorrt_llm::tests::layers::sampling
|
|
{
|
|
|
|
struct TestSamplingParams
|
|
{
|
|
std::vector<runtime::SizeType32> topKs;
|
|
std::vector<float> topPs;
|
|
std::vector<float> temperatures;
|
|
std::vector<float> repetitionPenalties;
|
|
std::vector<float> presencePenalties;
|
|
std::vector<float> frequencyPenalties;
|
|
std::vector<runtime::SizeType32> promptIgnoreLengths;
|
|
std::vector<runtime::SizeType32> minLengths;
|
|
std::vector<float> decay;
|
|
std::vector<float> minTopP;
|
|
std::vector<runtime::TokenIdType> topPResetIds;
|
|
std::vector<std::vector<std::vector<runtime::TokenIdType>>> badWords;
|
|
std::vector<std::vector<std::vector<runtime::TokenIdType>>> stopWords;
|
|
std::vector<runtime::SizeType32> repeatNGramSizes;
|
|
bool useBias{false};
|
|
|
|
std::optional<executor::DecodingMode> decodingMode;
|
|
|
|
// Medusa setup
|
|
std::optional<runtime::SizeType32> maxNumMedusaHeads{std::nullopt};
|
|
std::optional<std::vector<std::vector<runtime::SizeType32>>> topKMedusaHeads{std::nullopt};
|
|
std::optional<std::vector<runtime::SizeType32>> tokensPerStep{std::nullopt};
|
|
std::optional<std::vector<std::vector<tensorrt_llm::runtime::SizeType32>>> paths;
|
|
std::optional<std::vector<std::vector<tensorrt_llm::runtime::TokenIdType>>> outputIds;
|
|
};
|
|
|
|
template <typename T>
|
|
class DynamicDecodeLayerTest : public testing::Test
|
|
{
|
|
private:
|
|
void SetUp() override;
|
|
|
|
using TensorPtr = tensorrt_llm::runtime::ITensor::SharedPtr;
|
|
using TensorConstPtr = tensorrt_llm::runtime::ITensor::SharedConstPtr;
|
|
using BufferPtr = tensorrt_llm::runtime::IBuffer::SharedPtr;
|
|
|
|
static uint64_t const mMaxSeed{64};
|
|
runtime::SizeType32 const mBatchSize{6};
|
|
runtime::SizeType32 const mMaxBatchSize{2 * mBatchSize};
|
|
runtime::SizeType32 const mBeamWidth{1};
|
|
runtime::SizeType32 const mBatchBeam{mBatchSize * mBeamWidth};
|
|
runtime::SizeType32 const mVocabSize{9};
|
|
runtime::SizeType32 const mVocabSizePadded{mVocabSize};
|
|
|
|
runtime::SizeType32 const mMaxInputLen{0}; // has no effect.
|
|
runtime::SizeType32 const mMaxOutputLen{4};
|
|
runtime::SizeType32 const mMaxSeqLen{mMaxInputLen + mMaxOutputLen};
|
|
runtime::SizeType32 const mSinkTokenLength{0};
|
|
runtime::TokenIdType mEndId = mVocabSize;
|
|
runtime::SizeType32 mMaxTokensPerStep{1};
|
|
runtime::SizeType32 mMaxMedusaHeads{0};
|
|
|
|
bool mUseLogitsVec{false};
|
|
|
|
TensorPtr mLogitsDevice;
|
|
TensorPtr mRuntimeLogitsHost;
|
|
TensorPtr mLogitsRefHost;
|
|
TensorPtr mContextLengthDevice;
|
|
TensorPtr mSeqLengthsDevice;
|
|
TensorPtr mFinishedDevice;
|
|
TensorPtr mFinishedSumDevice;
|
|
TensorPtr mOutputIdsDevice;
|
|
TensorPtr mNewTokens;
|
|
TensorPtr mEndIdsDevice;
|
|
TensorPtr mBatchSlots;
|
|
|
|
TensorPtr mBadWordsLens;
|
|
TensorPtr mBadWords;
|
|
TensorPtr mBadWordsPtrs;
|
|
|
|
TensorPtr mStopWordsLens;
|
|
TensorPtr mStopWords;
|
|
TensorPtr mStopWordsPtrs;
|
|
|
|
TensorPtr mEmbeddingBiasHost;
|
|
TensorPtr mEmbeddingBiasDevice;
|
|
|
|
TensorPtr mRefLogProbsHost;
|
|
TensorPtr mOutputLogProbsDevice;
|
|
TensorPtr mOutputLogProbsTiledDevice;
|
|
|
|
TensorPtr mCumLogProbsDevice;
|
|
|
|
// Medusa tensors
|
|
TensorPtr mPathsDevice;
|
|
TensorPtr mTreeIdsDevice;
|
|
TensorPtr mAcceptedLengths;
|
|
TensorPtr mAcceptedLengthCumSumDevice;
|
|
TensorPtr mPackedPathsDevice;
|
|
TensorPtr mMedusaLogitsDevice;
|
|
TensorPtr mNextDraftTokensDevice;
|
|
TensorPtr mTokensPerStepDevice;
|
|
|
|
std::vector<TensorConstPtr> mLogitsVec;
|
|
|
|
std::shared_ptr<tensorrt_llm::runtime::CudaStream> mStream;
|
|
std::shared_ptr<tensorrt_llm::runtime::BufferManager> mBufferManager;
|
|
std::unique_ptr<tensorrt_llm::layers::DynamicDecodeLayer<T>> mDecodeLayer;
|
|
std::shared_ptr<runtime::DecodingLayerWorkspace> mDecodingWorkspace;
|
|
|
|
std::vector<T> mTestLogitsInit;
|
|
|
|
runtime::SizeType32 mMaxBadWordsLen{0};
|
|
runtime::SizeType32 mMaxStopWordsLen{0};
|
|
|
|
executor::DecodingMode mDecodingMode = executor::DecodingMode::Auto();
|
|
|
|
private:
|
|
void allocateMedusaData(TestSamplingParams const& params);
|
|
|
|
void setup(uint64_t seed, TestSamplingParams const& params);
|
|
|
|
runtime::SizeType32 getMaxWordsLen(std::vector<std::vector<std::vector<runtime::TokenIdType>>> const& inputWords);
|
|
void initXWordsTensors(runtime::SizeType32* batchSlotsPtr, runtime::TokenIdType* wordsData,
|
|
runtime::TokenIdType** wordsPtr, runtime::SizeType32* wordsLenData, runtime::SizeType32 maxWordsLen,
|
|
std::vector<std::vector<std::vector<runtime::TokenIdType>>> const& inputWords);
|
|
|
|
std::shared_ptr<tensorrt_llm::layers::DecodingInputs> createInputTensors(runtime::SizeType32 step);
|
|
|
|
std::shared_ptr<tensorrt_llm::layers::BaseDecodingOutputs> createOutputTensors();
|
|
|
|
void batchCopy(runtime::SizeType32 step);
|
|
bool checkResult(runtime::TokenIdType* outputIds, std::vector<std::set<runtime::TokenIdType>> const& expectedIds,
|
|
runtime::SizeType32* seqLens, runtime::SizeType32 leadingDim, runtime::SizeType32 stride,
|
|
runtime::SizeType32 step, bool outputIdsTransposed = false, runtime::SizeType32 strideTransposed = 0);
|
|
|
|
void fillRefLogits(runtime::SizeType32 const* seqLenHost,
|
|
std::vector<std::set<runtime::TokenIdType>> const& expectedOutputIds, runtime::SizeType32 step);
|
|
|
|
void createMedusaInputs(std::shared_ptr<tensorrt_llm::layers::DecodingInputs>& baseInputs);
|
|
void createMedusaOutputs(std::shared_ptr<tensorrt_llm::layers::BaseDecodingOutputs>& baseOutputs);
|
|
|
|
public:
|
|
void runTest(std::vector<std::set<runtime::TokenIdType>> const& expectedOutputIds, TestSamplingParams const& params,
|
|
runtime::TokenIdType endId = -1);
|
|
|
|
void allocateData(TestSamplingParams const& params, runtime::TokenIdType endId = -1);
|
|
|
|
void runTestImpl(std::vector<std::set<runtime::TokenIdType>> const& expectedOutputIds,
|
|
TestSamplingParams const& params, runtime::TokenIdType endId = -1);
|
|
};
|
|
|
|
typedef testing::Types<float, half> FloatAndHalfTypes;
|
|
|
|
} // namespace tensorrt_llm::tests::layers::sampling
|