TensorRT-LLMs/cpp/tests/unit_tests/runtime/tllmBuffersTest.cpp
2025-03-11 21:13:42 +08:00

644 lines
24 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gmock/gmock-matchers.h>
#include <gtest/gtest.h>
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/stringUtils.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaMemPool.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/memoryCounters.h"
#include "tensorrt_llm/runtime/tllmBuffers.h"
#include <algorithm>
#include <limits>
#include <memory>
#include <random>
#include <sstream>
#include <thread>
#include <tuple>
#include <type_traits>
#include <vector>
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
class TllmBuffersTest : public ::testing::Test // NOLINT(cppcoreguidelines-pro-type-member-init)
{
protected:
void SetUp() override
{
mDeviceCount = tc::getDeviceCount();
PinnedPoolAllocator::getPool().setChunkSize(kPinnedPoolChunkSize);
mStream = std::make_shared<CudaStream>();
mMemPool = CudaMemPool::getPrimaryPoolForDevice(mStream->getDevice());
}
void TearDown() override {}
int mDeviceCount;
std::shared_ptr<CudaMemPool> mMemPool = nullptr;
std::shared_ptr<CudaStream> mStream = nullptr;
static auto constexpr kPinnedPoolChunkSize = std::size_t(1) << 22;
static constexpr std::string_view noDeviceSkipReason = "This test cannot run without any device present";
static constexpr std::string_view noPoolSkipReason
= "This test cannot be run against devices that do not support memory pools.";
};
TEST_F(TllmBuffersTest, Stream)
{
if (mDeviceCount == 0)
{
GTEST_SKIP() << noDeviceSkipReason;
}
CudaStream stream{};
EXPECT_NE(stream.get(), nullptr);
auto ptr = std::make_shared<CudaStream>();
EXPECT_NE(ptr->get(), nullptr);
EXPECT_GE(ptr->getDevice(), 0);
CudaStream lease{ptr->get(), ptr->getDevice(), false};
EXPECT_EQ(lease.get(), ptr->get());
}
TEST_F(TllmBuffersTest, CudaAllocator)
{
auto constexpr size = 1024;
CudaAllocator allocator{};
auto& counters = MemoryCounters::getInstance();
EXPECT_EQ(counters.getGpu(), 0);
auto ptr = allocator.allocate(size);
EXPECT_NE(ptr, nullptr);
EXPECT_EQ(counters.getGpu(), size);
EXPECT_EQ(counters.getGpuDiff(), size);
EXPECT_NO_THROW(allocator.deallocate(ptr, size));
EXPECT_EQ(counters.getGpu(), 0);
EXPECT_EQ(counters.getGpuDiff(), -size);
EXPECT_EQ(allocator.getMemoryType(), MemoryType::kGPU);
EXPECT_THROW(allocator.deallocate(ptr, size), std::runtime_error);
}
TEST_F(TllmBuffersTest, PinnedAllocator)
{
auto constexpr size = 1024;
PinnedAllocator allocator{};
auto& counters = MemoryCounters::getInstance();
EXPECT_EQ(counters.getPinned(), 0);
auto ptr = allocator.allocate(size);
EXPECT_NE(ptr, nullptr);
EXPECT_EQ(counters.getPinned(), size);
EXPECT_EQ(counters.getPinnedDiff(), size);
EXPECT_NO_THROW(allocator.deallocate(ptr, size));
EXPECT_EQ(counters.getPinned(), 0);
EXPECT_EQ(counters.getPinnedDiff(), -size);
EXPECT_EQ(allocator.getMemoryType(), MemoryType::kPINNED);
EXPECT_THROW(allocator.deallocate(ptr, size), std::runtime_error);
}
TEST_F(TllmBuffersTest, HostAllocator)
{
auto constexpr size = 1024;
HostAllocator allocator{};
auto& counters = MemoryCounters::getInstance();
EXPECT_EQ(counters.getCpu(), 0);
auto ptr = allocator.allocate(size);
EXPECT_NE(ptr, nullptr);
EXPECT_EQ(counters.getCpu(), size);
EXPECT_EQ(counters.getCpuDiff(), size);
EXPECT_NO_THROW(allocator.deallocate(ptr, size));
EXPECT_EQ(counters.getCpu(), 0);
EXPECT_EQ(counters.getCpuDiff(), -size);
EXPECT_EQ(allocator.getMemoryType(), MemoryType::kCPU);
}
TEST_F(TllmBuffersTest, UVMAllocator)
{
auto constexpr size = 1024;
UVMAllocator allocator{};
auto& counters = MemoryCounters::getInstance();
EXPECT_EQ(counters.getUVM(), 0);
auto ptr = allocator.allocate(size);
EXPECT_NE(ptr, nullptr);
EXPECT_EQ(counters.getUVM(), size);
EXPECT_EQ(counters.getUVMDiff(), size);
EXPECT_NO_THROW(allocator.deallocate(ptr, size));
EXPECT_EQ(counters.getUVM(), 0);
EXPECT_EQ(counters.getUVMDiff(), -size);
EXPECT_EQ(allocator.getMemoryType(), MemoryType::kUVM);
}
TEST_F(TllmBuffersTest, CudaAllocatorAsync)
{
if (mDeviceCount == 0)
{
GTEST_SKIP() << noDeviceSkipReason;
}
auto constexpr size = 1024;
if (mMemPool == nullptr)
{
GTEST_SKIP() << "This test cannot be run against devices that do not support memory pools.";
}
CudaAllocatorAsync allocator{mStream, mMemPool};
auto& counters = MemoryCounters::getInstance();
EXPECT_EQ(counters.getGpu(), 0);
auto ptr = allocator.allocate(size);
EXPECT_NE(ptr, nullptr);
EXPECT_EQ(counters.getGpu(), size);
EXPECT_EQ(counters.getGpuDiff(), size);
EXPECT_NO_THROW(allocator.deallocate(ptr, size));
EXPECT_EQ(counters.getGpu(), 0);
EXPECT_EQ(counters.getGpuDiff(), -size);
EXPECT_EQ(allocator.getMemoryType(), MemoryType::kGPU);
mStream->synchronize();
CudaAllocatorAsync allocatorCopy = allocator;
EXPECT_EQ(allocatorCopy.getCudaStream(), mStream);
CudaAllocatorAsync allocatorMove = std::move(allocatorCopy);
EXPECT_EQ(allocatorMove.getCudaStream(), mStream);
EXPECT_THROW(allocator.deallocate(ptr, size), std::runtime_error);
}
namespace
{
void testBuffer(IBuffer& buffer, std::int32_t typeSize)
{
auto const size = buffer.getSize();
EXPECT_NE(buffer.data(), nullptr);
EXPECT_EQ(buffer.getSizeInBytes(), size * typeSize);
EXPECT_EQ(buffer.getCapacity(), size);
buffer.resize(size / 2);
EXPECT_EQ(buffer.getSize(), size / 2);
EXPECT_EQ(buffer.getCapacity(), size);
buffer.resize(size * 2);
EXPECT_EQ(buffer.getSize(), size * 2);
EXPECT_EQ(buffer.getCapacity(), size * 2);
buffer.release();
EXPECT_EQ(buffer.getSize(), 0);
EXPECT_EQ(buffer.data(), nullptr);
buffer.resize(size / 2);
EXPECT_EQ(buffer.getCapacity(), size / 2);
auto bufferWrapped = IBuffer::wrap(buffer.data(), buffer.getDataType(), buffer.getSize(), buffer.getCapacity());
EXPECT_EQ(bufferWrapped->data(), buffer.data());
EXPECT_EQ(bufferWrapped->getSize(), buffer.getSize());
EXPECT_EQ(bufferWrapped->getCapacity(), buffer.getCapacity());
EXPECT_EQ(bufferWrapped->getDataType(), buffer.getDataType());
EXPECT_EQ(bufferWrapped->getMemoryType(), buffer.getMemoryType());
EXPECT_NO_THROW(bufferWrapped->resize(buffer.getCapacity() / 2));
EXPECT_THROW(bufferWrapped->resize(buffer.getCapacity() * 2), std::bad_alloc);
auto byteBuffer = IBuffer::wrap(static_cast<std::uint8_t*>(buffer.data()), buffer.getSizeInBytes());
EXPECT_EQ(byteBuffer->getSizeInBytes(), buffer.getSizeInBytes());
EXPECT_EQ(byteBuffer->getCapacity(), buffer.getSizeInBytes());
auto tensorWrapped = ITensor::wrap(buffer.data(), buffer.getDataType(),
ITensor::makeShape({static_cast<SizeType32>(buffer.getSize())}), buffer.getCapacity());
EXPECT_EQ(tensorWrapped->getSize(), buffer.getSize());
EXPECT_EQ(tensorWrapped->getCapacity(), buffer.getCapacity());
EXPECT_EQ(tensorWrapped->getDataType(), buffer.getDataType());
EXPECT_EQ(tensorWrapped->getMemoryType(), buffer.getMemoryType());
EXPECT_NO_THROW(tensorWrapped->reshape(ITensor::makeShape({static_cast<SizeType32>(buffer.getCapacity()) / 2})));
EXPECT_THROW(tensorWrapped->reshape(ITensor::makeShape({static_cast<SizeType32>(buffer.getCapacity()) * 2})),
std::bad_alloc);
}
} // namespace
TEST_F(TllmBuffersTest, DeviceBuffer)
{
if (mDeviceCount == 0)
{
GTEST_SKIP() << noDeviceSkipReason;
}
auto streamPtr = std::make_shared<CudaStream>();
auto constexpr size = 1024;
if (static_cast<bool>(mMemPool))
{
CudaAllocatorAsync allocator{mStream, mMemPool};
{
DeviceBuffer buffer{size, nvinfer1::DataType::kFLOAT, allocator};
testBuffer(buffer, sizeof(float));
}
streamPtr->synchronize();
static_assert(!std::is_copy_constructible<DeviceBuffer>::value);
static_assert(!std::is_copy_assignable<DeviceBuffer>::value);
}
else
{
CudaAllocator allocator{};
{
StaticDeviceBuffer buffer{size, nvinfer1::DataType::kFLOAT, allocator};
testBuffer(buffer, sizeof(float));
}
streamPtr->synchronize();
static_assert(!std::is_copy_constructible<DeviceBuffer>::value);
static_assert(!std::is_copy_assignable<DeviceBuffer>::value);
}
}
TEST_F(TllmBuffersTest, DeviceTensor)
{
if (mDeviceCount == 0)
{
GTEST_SKIP() << noDeviceSkipReason;
}
if (mMemPool == nullptr)
{
GTEST_SKIP() << noPoolSkipReason;
}
auto streamPtr = std::make_shared<CudaStream>();
nvinfer1::Dims constexpr dims{3, 16, 8, 4};
CudaAllocatorAsync allocator{streamPtr, mMemPool};
{
DeviceTensor tensor{dims, nvinfer1::DataType::kFLOAT, allocator};
EXPECT_EQ(tensor.getSize(), ITensor::volume(dims));
testBuffer(tensor, sizeof(float));
EXPECT_EQ(tensor.getSize(), ITensor::volume(tensor.getShape()));
}
streamPtr->synchronize();
static_assert(!std::is_copy_constructible<DeviceBuffer>::value);
static_assert(!std::is_copy_assignable<DeviceBuffer>::value);
}
TEST_F(TllmBuffersTest, BufferSlice)
{
auto constexpr size = 1024;
HostAllocator allocator{};
auto constexpr dataType = nvinfer1::DataType::kFLOAT;
auto buffer = std::make_shared<HostBuffer>(size, dataType, allocator);
auto offset = size / 8;
auto slice = IBuffer::slice(buffer, offset);
auto const sizeSlice = size - offset;
EXPECT_EQ(slice->getSize(), sizeSlice);
EXPECT_EQ(slice->getCapacity(), sizeSlice);
EXPECT_EQ(static_cast<std::uint8_t*>(slice->data()) - static_cast<std::uint8_t*>(buffer->data()),
offset * BufferDataType(dataType).getSize());
EXPECT_NO_THROW(slice->resize(sizeSlice));
EXPECT_NO_THROW(slice->resize(sizeSlice / 2));
EXPECT_THROW(slice->resize(sizeSlice * 2), std::runtime_error);
EXPECT_NO_THROW(slice->release());
EXPECT_EQ(slice->data(), nullptr);
std::shared_ptr<HostBuffer const> constBuffer{buffer};
auto constSlice = IBuffer::slice(constBuffer, offset);
EXPECT_EQ(constSlice->getSize(), sizeSlice);
auto uniqueSlice = IBuffer::slice(std::move(constSlice), 1);
EXPECT_EQ(uniqueSlice->getSize(), sizeSlice - 1);
}
TEST_F(TllmBuffersTest, BufferOutput)
{
if (mDeviceCount == 0)
{
GTEST_SKIP() << noDeviceSkipReason;
}
if (mMemPool == nullptr)
{
GTEST_SKIP() << noPoolSkipReason;
}
auto streamPtr = std::make_shared<CudaStream>();
CudaAllocatorAsync allocator{streamPtr, mMemPool};
for (std::size_t size : {0, 16})
{
DeviceBuffer buffer{size, nvinfer1::DataType::kFLOAT, allocator};
TLLM_CUDA_CHECK(cudaMemsetAsync(buffer.data(), 0, buffer.getSizeInBytes(), streamPtr->get()));
streamPtr->synchronize();
std::stringstream ss;
ss << buffer;
auto str = ss.str();
EXPECT_THAT(str, ::testing::HasSubstr(std::string("shape: (") + std::to_string(size) + ")"));
EXPECT_THAT(str, ::testing::HasSubstr(tc::vec2str(std::vector<int>(size, 0))));
}
streamPtr->synchronize();
}
TEST_F(TllmBuffersTest, TensorOutput)
{
if (mDeviceCount == 0)
{
GTEST_SKIP() << noDeviceSkipReason;
}
if (mMemPool == nullptr)
{
GTEST_SKIP() << noPoolSkipReason;
}
auto streamPtr = std::make_shared<CudaStream>();
nvinfer1::Dims constexpr dims{3, 16, 8, 4};
CudaAllocatorAsync allocator{streamPtr, mMemPool};
for (auto dataType :
{nvinfer1::DataType::kFLOAT, nvinfer1::DataType::kHALF, nvinfer1::DataType::kBOOL, nvinfer1::DataType::kINT8,
nvinfer1::DataType::kINT32, nvinfer1::DataType::kINT64, nvinfer1::DataType::kUINT8})
{
DeviceTensor tensor{dims, dataType, allocator};
TLLM_CUDA_CHECK(cudaMemsetAsync(tensor.data(), 0, tensor.getSizeInBytes(), streamPtr->get()));
streamPtr->synchronize();
std::stringstream ss;
ss << tensor;
auto str = ss.str();
EXPECT_THAT(str, ::testing::HasSubstr(std::string("shape: ") + ITensor::toString(dims)));
EXPECT_THAT(str, ::testing::HasSubstr("i=15 j=7: (0, 0, 0, 0)"))
<< "dataType: " << static_cast<std::int32_t>(dataType);
}
streamPtr->synchronize();
}
namespace
{
template <typename T>
void testBufferType()
{
auto constexpr size = 1024;
HostAllocator allocator{};
BufferDataType constexpr dataType{TRTDataType<T>::value};
using limits = std::numeric_limits<T>;
static_assert(dataType.isPointer() || dataType.isUnsigned() != limits::is_signed);
static_assert(std::is_same_v<T,
typename DataTypeTraits<dataType.getDataType(), dataType.isUnsigned(), dataType.isPointer()>::type>);
IBuffer::SharedPtr buffer{std::make_shared<HostBuffer>(size, dataType, allocator)};
auto bufferPtr = bufferCast<T>(*buffer);
auto constexpr max = limits::max();
bufferPtr[0] = max;
EXPECT_EQ(bufferPtr[0], max);
auto constexpr min = limits::min();
bufferPtr[size - 1] = min;
EXPECT_EQ(bufferPtr[size - 1], min);
EXPECT_EQ(buffer->data(size), bufferPtr + size);
}
} // namespace
TEST_F(TllmBuffersTest, ExtendedTypes)
{
testBufferType<bool>();
testBufferType<bool*>();
testBufferType<std::int8_t>();
testBufferType<std::int8_t*>();
testBufferType<std::uint8_t>();
testBufferType<std::uint8_t*>();
testBufferType<std::int32_t>();
testBufferType<std::int32_t*>();
testBufferType<std::uint32_t>();
testBufferType<std::uint32_t*>();
testBufferType<std::int64_t>();
testBufferType<std::int64_t*>();
testBufferType<std::uint64_t>();
testBufferType<std::uint64_t*>();
}
TEST_F(TllmBuffersTest, BytesToString)
{
auto constexpr precision = 2;
MemoryCounters::SizeType32 size;
MemoryCounters::DiffType diff;
size = (1ul << 10) - 1;
EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1023.00 B");
size = 1ul << 10;
EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.00 KB");
size = (1ul << 10) + (1ul << 9);
EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.50 KB");
size = (1ul << 20) - (1ul << 10);
EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1023.00 KB");
size = 1ul << 20;
EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.00 MB");
size = (1ul << 20) + (1ul << 19);
EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.50 MB");
size = (1ul << 30) - (1ul << 20);
EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1023.00 MB");
size = 1ul << 30;
EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.00 GB");
size = (1ul << 30) + (1ul << 29);
EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.50 GB");
size = (1ull << 40) - (1ull << 30);
EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1023.00 GB");
size = 1ull << 40;
EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.00 TB");
size = (1ull << 40) + (1ull << 39);
EXPECT_EQ(MemoryCounters::bytesToString(size, precision), "1.50 TB");
diff = -(1l << 10) + 1;
EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1023.00 B");
diff = -(1l << 10);
EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.00 KB");
diff = -(1l << 10) - (1l << 9);
EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.50 KB");
diff = -(1l << 20) + (1l << 10);
EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1023.00 KB");
diff = -(1l << 20);
EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.00 MB");
diff = -(1l << 20) - (1l << 19);
EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.50 MB");
diff = -(1l << 30) + (1l << 20);
EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1023.00 MB");
diff = -(1l << 30);
EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.00 GB");
diff = -(1l << 30) - (1l << 29);
EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.50 GB");
diff = -(1ll << 40) + (1ll << 30);
EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1023.00 GB");
diff = -(1ll << 40);
EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.00 TB");
diff = -(1ll << 40) - (1ll << 39);
EXPECT_EQ(MemoryCounters::bytesToString(diff, precision), "-1.50 TB");
}
TEST_F(TllmBuffersTest, PinnedPoolAllocator)
{
if (mDeviceCount == 0)
{
GTEST_SKIP() << noDeviceSkipReason;
}
using MemPool = MemoryPool<PinnedAllocator>;
auto expectedSize = [](auto const& tensor)
{
auto s = tensor->getSizeInBytes();
constexpr auto alignment = MemPool::kAlignment;
s = s + alignment - 1 - ((s + alignment - 1) % alignment);
return s;
};
auto& pool = PinnedPoolAllocator::getPool();
auto& segments = pool.getMemorySegments();
pool.logSegments();
EXPECT_EQ(segments.size(), 0);
{
auto a = BufferManager::pinnedPool(ITensor::makeShape({512, 4, 4}), nvinfer1::DataType::kFLOAT);
auto b = BufferManager::pinnedPool(ITensor::makeShape({512, 10}), nvinfer1::DataType::kHALF);
pool.logSegments();
auto it = std::begin(segments);
EXPECT_NE(it->tag, nullptr);
EXPECT_EQ(it->size, expectedSize(a));
it = std::next(it);
EXPECT_NE(it->tag, nullptr);
EXPECT_EQ(it->size, expectedSize(b));
it = std::next(it);
EXPECT_EQ(it->tag, nullptr);
it = std::next(it);
EXPECT_EQ(it, std::end(segments));
}
auto const chunkSize = pool.getChunkSize();
auto constexpr initChunkSize = kPinnedPoolChunkSize;
EXPECT_EQ(chunkSize, initChunkSize);
{
pool.logSegments();
auto it = std::begin(segments);
EXPECT_EQ(it->tag, nullptr);
EXPECT_EQ(it->size, chunkSize);
}
std::size_t secondChunkSize;
{
// Test creating a new chunk
auto c = BufferManager::pinnedPool(ITensor::makeShape({initChunkSize + 1}), nvinfer1::DataType::kUINT8);
pool.logSegments();
auto it = std::begin(segments);
EXPECT_EQ(it->tag, nullptr);
EXPECT_EQ(it->size, chunkSize);
it = std::next(it);
EXPECT_NE(it->tag, nullptr);
EXPECT_EQ(it->size, expectedSize(c));
it = std::next(it);
EXPECT_EQ(it, std::end(segments));
secondChunkSize = expectedSize(c);
EXPECT_EQ(secondChunkSize, pool.getChunkSize());
}
{
pool.logSegments();
auto it = std::begin(segments);
EXPECT_EQ(it->tag, nullptr);
EXPECT_EQ(it->size, chunkSize);
it = std::next(it);
EXPECT_EQ(it->tag, nullptr);
EXPECT_EQ(it->size, secondChunkSize);
it = std::next(it);
EXPECT_EQ(it, std::end(segments));
}
}
TEST_F(TllmBuffersTest, MemoryPool)
{
using MemPool = MemoryPool<HostAllocator>;
auto constexpr alignment = MemPool::kAlignment;
auto constexpr chunkSize = alignment * 4;
auto& memCounters = MemoryCounters::getInstance();
auto const initMemory = memCounters.getCpu();
{
MemPool pool{chunkSize};
EXPECT_EQ(pool.getChunkSize(), chunkSize);
EXPECT_EQ(memCounters.getCpu(), initMemory);
auto constexpr sizeBytes = alignment / 4;
auto ptr_0 = pool.allocate(sizeBytes);
auto const oneChunk = initMemory + chunkSize;
EXPECT_EQ(memCounters.getCpu(), oneChunk);
auto ptr_1 = pool.allocate(0);
EXPECT_EQ(memCounters.getCpu(), oneChunk);
auto ptr_2 = pool.allocate(sizeBytes);
EXPECT_EQ(memCounters.getCpu(), oneChunk);
pool.deallocate(ptr_0, sizeBytes);
EXPECT_EQ(memCounters.getCpu(), oneChunk);
pool.deallocate(ptr_1, 0);
EXPECT_EQ(memCounters.getCpu(), oneChunk);
pool.deallocate(ptr_2, sizeBytes);
EXPECT_EQ(memCounters.getCpu(), oneChunk);
EXPECT_EQ(static_cast<std::uint8_t*>(ptr_1) - static_cast<std::uint8_t*>(ptr_0), alignment);
EXPECT_EQ(static_cast<std::uint8_t*>(ptr_2) - static_cast<std::uint8_t*>(ptr_1), alignment);
}
EXPECT_EQ(memCounters.getCpu(), initMemory);
}
TEST_F(TllmBuffersTest, PinnedPoolStressTest)
{
if (mDeviceCount == 0)
{
GTEST_SKIP() << noDeviceSkipReason;
}
using Allocator = PinnedPoolAllocator;
using MemPool = Allocator::PoolType;
auto& memCounters = MemoryCounters::getInstance();
auto const initMemory = memCounters.getPinned();
auto constexpr chunkSize = MemPool::kInitialChunkSize / 4;
std::mt19937 rnd{42}; // mersenne_twister_engine seeded with 42 NOLINT(*-msc51-cpp)
auto constexpr expectedSize = std::size_t{1} << 20; // 1 MiB
std::poisson_distribution distribution{expectedSize};
auto constexpr numberOfAllocations = chunkSize * 2 / expectedSize;
std::vector<std::tuple<void*, std::size_t>> allocations;
allocations.reserve(numberOfAllocations);
Allocator allocator{};
auto& pool = Allocator::getPool();
pool.setChunkSize(chunkSize);
EXPECT_EQ(pool.getChunkSize(), chunkSize);
EXPECT_EQ(memCounters.getPinned(), initMemory);
auto const poolReservedSize = pool.getReservedSize();
auto const poolUsedSize = pool.getUsedSize();
std::size_t totalUsedSize{0};
for (std::size_t i = 0; i < numberOfAllocations; ++i)
{
auto const size = distribution(rnd);
auto const ptr = allocator.allocate(size);
allocations.emplace_back(ptr, size);
totalUsedSize += size;
}
EXPECT_GE(pool.getUsedSize(), poolUsedSize + totalUsedSize);
std::shuffle(allocations.begin(), allocations.end(), rnd);
auto const deallocIdx = allocations.size() / 2;
auto const deallocSize = allocations.size() - deallocIdx;
for (auto const& [ptr, size] : BufferRange{allocations.data() + deallocIdx, deallocSize})
{
allocator.deallocate(ptr, size);
totalUsedSize -= size;
}
allocations.resize(deallocIdx);
EXPECT_GE(pool.getUsedSize(), poolUsedSize + totalUsedSize);
EXPECT_EQ(memCounters.getPinned() - initMemory, pool.getReservedSize() - poolReservedSize);
std::thread thread(
[&]()
{
for (std::size_t i = 0; i < deallocSize; ++i)
{
auto const size = distribution(rnd);
auto const ptr = allocator.allocate(size);
allocations.emplace_back(ptr, size);
totalUsedSize += size;
}
EXPECT_GE(pool.getUsedSize(), poolUsedSize + totalUsedSize);
std::shuffle(allocations.begin() + static_cast<std::ptrdiff_t>(deallocIdx), allocations.end(), rnd);
for (auto const& [ptr, size] : allocations)
{
allocator.deallocate(ptr, size);
totalUsedSize -= size;
}
EXPECT_EQ(totalUsedSize, 0u);
EXPECT_EQ(pool.getUsedSize(), poolUsedSize);
});
thread.join();
}