TensorRT-LLMs/examples/bert/convert_checkpoint.py
2024-12-24 15:58:43 +08:00

189 lines
6.5 KiB
Python

import argparse
import os
import time
import traceback
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Union
from transformers import AutoConfig
import tensorrt_llm
from tensorrt_llm._utils import release_gc
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import (BertForQuestionAnswering,
BertForSequenceClassification, BertModel,
RobertaForQuestionAnswering,
RobertaForSequenceClassification, RobertaModel)
from tensorrt_llm.models.modeling_utils import QuantConfig
from tensorrt_llm.quantization import QuantAlgo
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model',
required=True,
choices=[
'BertModel',
'BertForQuestionAnswering',
'BertForSequenceClassification',
'RobertaModel',
'RobertaForQuestionAnswering',
'RobertaForSequenceClassification',
])
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'float16'])
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
# Quantization args
parser.add_argument("--use_fp8",
action="store_true",
default=False,
help="Enable FP8 per-tensor quantization")
parser.add_argument(
'--quant_ckpt_path',
type=str,
default=None,
help='Path of a quantized model checkpoint in .safetensors format')
parser.add_argument(
'--calib_dataset',
type=str,
default='ccdv/cnn_dailymail',
help=
"The huggingface dataset name or the local directory of the dataset for calibration."
)
parser.add_argument('--log_level', type=str, default='info')
args = parser.parse_args()
return args
def args_to_quant_config(args: argparse.Namespace) -> QuantConfig:
'''return config dict with quantization info based on the command line args
'''
quant_config = QuantConfig()
if args.use_fp8:
quant_config.quant_algo = QuantAlgo.FP8
return quant_config
def convert_and_save_hf(args):
model_dir = args.model_dir
world_size = args.tp_size * args.pp_size
#TODO: add override_fields if needed
# Need to convert the cli args to the kay-value pairs and override them in the generate config dict.
# Ideally these fields will be moved out of the config and pass them into build API, keep them here for compatibility purpose for now,
# before the refactor is done.
#TODO: add fp8 support later
quant_config = args_to_quant_config(args)
hf_config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
assert hf_config is not None, "Failed to load huggingface config, please check!"
def convert_and_save_rank(
args, rank,
tllm_class: Union[BertModel, RobertaModel, BertForQuestionAnswering,
RobertaForQuestionAnswering,
BertForSequenceClassification,
RobertaForSequenceClassification, ]):
mapping = Mapping(
world_size=world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size,
)
tik = time.time()
tllm_bert = tllm_class.from_hugging_face(
model_dir,
args.dtype,
mapping=mapping,
quant_config=quant_config,
)
print(f'Total time of reading and converting {time.time()-tik} s')
tik = time.time()
tllm_bert.save_checkpoint(args.output_dir, save_config=(rank == 0))
del tllm_bert
print(f'Total time of saving checkpoint {time.time()-tik} s')
tllm_class = globals()[f'{args.model}']
if not args.model == hf_config.architectures[0]:
logger.warning(
"The model doesn't match the architecture in huggingface config.")
execute(args.workers, [convert_and_save_rank] * world_size, args,
tllm_class)
release_gc()
def execute(workers, func, args,
tllm_class: Union[BertModel, RobertaModel, BertForQuestionAnswering,
RobertaForQuestionAnswering,
BertForSequenceClassification,
RobertaForSequenceClassification]):
if workers == 1:
for rank, f in enumerate(func):
f(args, rank, tllm_class)
else:
with ThreadPoolExecutor(max_workers=workers) as p:
futures = [
p.submit(f, args, rank, tllm_class)
for rank, f in enumerate(func)
]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(
exceptions
) == 0, "Checkpoint conversion failed, please check error log."
def main():
print(tensorrt_llm.__version__)
args = parse_arguments()
logger.set_level(args.log_level)
assert ((args.tp_size <= 2)
and (args.pp_size == 1)), "For now we only support TP = 2!"
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
assert args.model_dir is not None
convert_and_save_hf(args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')
if __name__ == '__main__':
main()