mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
121 lines
4.3 KiB
Python
121 lines
4.3 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
|
|
from torch import nn
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Module, Tensor
|
|
|
|
|
|
class TorchMLP(nn.Module):
|
|
|
|
def __init__(self, hidden_size, ffn_hidden_size, bias=True):
|
|
super().__init__()
|
|
self.fc = nn.Linear(hidden_size, ffn_hidden_size, bias=bias)
|
|
self.proj = nn.Linear(ffn_hidden_size, hidden_size, bias=bias)
|
|
|
|
def forward(self, hidden_states):
|
|
inter = self.fc(hidden_states)
|
|
inter = nn.functional.relu(inter)
|
|
output = self.proj(inter)
|
|
return output, inter
|
|
|
|
|
|
class MLP(Module):
|
|
|
|
def __init__(self,
|
|
hidden_size,
|
|
ffn_hidden_size,
|
|
bias=True,
|
|
tp_group=None,
|
|
tp_size=1):
|
|
super().__init__()
|
|
self.fc = tensorrt_llm.layers.ColumnLinear(hidden_size,
|
|
ffn_hidden_size,
|
|
bias=bias,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
gather_output=False)
|
|
self.proj = tensorrt_llm.layers.RowLinear(ffn_hidden_size,
|
|
hidden_size,
|
|
bias=bias,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size)
|
|
|
|
def forward(self, hidden_states):
|
|
inter = self.fc(hidden_states)
|
|
inter = tensorrt_llm.functional.relu(inter)
|
|
self.register_network_output('inter', inter)
|
|
output = self.proj(inter)
|
|
return output
|
|
|
|
|
|
class TestDebuggingAPI(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
def test_debugging_api(self):
|
|
# test data
|
|
dtype = 'float32'
|
|
hidden_size = 768
|
|
x_data = torch.randn(2, 16, hidden_size)
|
|
|
|
tm = TorchMLP(hidden_size=hidden_size,
|
|
ffn_hidden_size=hidden_size * 4,
|
|
bias=False)
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
x = Tensor(name='x',
|
|
shape=x_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
|
|
gm = MLP(hidden_size=hidden_size,
|
|
ffn_hidden_size=4 * hidden_size,
|
|
bias=False)
|
|
gm.fc.weight.value = tm.fc.weight.detach().cpu().numpy()
|
|
gm.proj.weight.value = tm.proj.weight.detach().cpu().numpy()
|
|
|
|
output = gm.forward(x)
|
|
net._mark_output(output, 'output',
|
|
tensorrt_llm.str_dtype_to_trt(dtype))
|
|
|
|
for k, v in gm.named_network_outputs():
|
|
net._mark_output(v, k, tensorrt_llm.str_dtype_to_trt(dtype))
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'x': x_data.numpy()})
|
|
|
|
# pytorch run
|
|
with torch.no_grad():
|
|
ref1, ref2 = tm(x_data)
|
|
|
|
# compare diff
|
|
np.testing.assert_allclose(ref1.cpu().numpy(),
|
|
outputs['output'],
|
|
atol=1e-5)
|
|
np.testing.assert_allclose(ref2.cpu().numpy(),
|
|
outputs['inter'],
|
|
atol=1e-5)
|