TensorRT-LLMs/_modules/tensorrt_llm/models/bert/model.html
2025-01-08 14:45:46 +08:00

781 lines
91 KiB
HTML

<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="../../../../">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>tensorrt_llm.models.bert.model &mdash; tensorrt_llm documentation</title>
<link rel="stylesheet" type="text/css" href="../../../../_static/pygments.css?v=80d5e7a1" />
<link rel="stylesheet" type="text/css" href="../../../../_static/css/theme.css?v=e59714d7" />
<link rel="stylesheet" type="text/css" href="../../../../_static/copybutton.css?v=76b2166b" />
<script src="../../../../_static/jquery.js?v=5d32c60e"></script>
<script src="../../../../_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="../../../../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../../../../_static/doctools.js?v=9bcbadda"></script>
<script src="../../../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../../../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../../../../_static/copybutton.js?v=65e89d2a"></script>
<script src="../../../../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../../../../genindex.html" />
<link rel="search" title="Search" href="../../../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../../index.html" class="icon icon-home">
tensorrt_llm
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<p class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../key-features.html">Key Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../release-notes.html">Release Notes</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Installation</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../installation/linux.html">Installing on Linux</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../installation/windows.html">Installing on Windows</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../installation/build-from-source-windows.html">Building from Source Code on Windows</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../installation/grace-hopper.html">Installing on Grace Hopper</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">LLM API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api/index.html">API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api/reference.html">API Reference</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">LLM API Examples</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api-examples/index.html">LLM Examples Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api-examples/customization.html">Common Customizations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api-examples/llm_api_examples.html">Examples</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Model Definition API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.layers.html">Layers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.functional.html">Functionals</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.models.html">Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.plugin.html">Plugin</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.runtime.html">Runtime</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">C++ API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../_cpp_gen/executor.html">Executor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../_cpp_gen/runtime.html">Runtime</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Command-Line Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../commands/trtllm-build.html">trtllm-build</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../commands/trtllm-serve.html">trtllm-serve</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Architecture</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/overview.html">TensorRT-LLM Architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/core-concepts.html">Model Definition</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/core-concepts.html#compilation">Compilation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/core-concepts.html#runtime">Runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/core-concepts.html#multi-gpu-and-multi-node-support">Multi-GPU and Multi-Node Support</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/checkpoint.html">TensorRT-LLM Checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/workflow.html">TensorRT-LLM Build Workflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/add-model.html">Adding a Model</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Advanced</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/gpt-attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/gpt-runtime.html">C++ GPT Runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/executor.html">Executor API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/graph-rewriting.html">Graph Rewriting Module</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/inference-request.html">Inference Request</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/inference-request.html#responses">Responses</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/lora.html">Run gpt-2b + LoRA using GptManager / cpp runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/expert-parallelism.html">Expert Parallelism in TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/kv-cache-reuse.html">KV cache reuse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/speculative-decoding.html">Speculative Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/disaggregated-service.html">Disaggregated-Service (experimental)</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Performance</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../performance/perf-overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../performance/perf-benchmarking.html">Benchmarking</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../performance/perf-best-practices.html">Best Practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../performance/perf-analysis.html">Performance Analysis</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../reference/troubleshooting.html">Troubleshooting</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../reference/support-matrix.html">Support Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../reference/precision.html">Numerical Precision</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../reference/memory.html">Memory Usage of TensorRT-LLM</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT-LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/Falcon180B-H200.html">Falcon-180B on a single H200 GPU with INT4 AWQ, and 6.7x faster Llama-70B over A100</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/quantization-in-TRT-LLM.html">Speed up inference with SOTA quantization techniques in TRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../../index.html">tensorrt_llm</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../../index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item"><a href="../../../index.html">Module code</a></li>
<li class="breadcrumb-item active">tensorrt_llm.models.bert.model</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for tensorrt_llm.models.bert.model</h1><div class="highlight"><pre>
<span></span><span class="c1"># SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION &amp; AFFILIATES. All rights reserved.</span>
<span class="c1"># SPDX-License-Identifier: Apache-2.0</span>
<span class="c1">#</span>
<span class="c1"># Licensed under the Apache License, Version 2.0 (the &quot;License&quot;);</span>
<span class="c1"># you may not use this file except in compliance with the License.</span>
<span class="c1"># You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">OrderedDict</span><span class="p">,</span> <span class="n">Union</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">tensorrt</span> <span class="k">as</span> <span class="nn">trt</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">transformers</span>
<span class="kn">from</span> <span class="nn">tensorrt_llm.models.modeling_utils</span> <span class="kn">import</span> <span class="n">PretrainedModel</span>
<span class="kn">from</span> <span class="nn">..._common</span> <span class="kn">import</span> <span class="n">default_net</span>
<span class="kn">from</span> <span class="nn">...functional</span> <span class="kn">import</span> <span class="p">(</span><span class="n">ACT2FN</span><span class="p">,</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">concat</span><span class="p">,</span> <span class="n">constant</span><span class="p">,</span> <span class="n">cumsum</span><span class="p">,</span> <span class="n">expand</span><span class="p">,</span>
<span class="n">index_select</span><span class="p">,</span> <span class="n">select</span><span class="p">,</span> <span class="n">shape</span><span class="p">,</span> <span class="nb">slice</span><span class="p">,</span> <span class="n">unsqueeze</span><span class="p">)</span>
<span class="kn">from</span> <span class="nn">...layers</span> <span class="kn">import</span> <span class="n">MLP</span><span class="p">,</span> <span class="n">BertAttention</span><span class="p">,</span> <span class="n">Embedding</span><span class="p">,</span> <span class="n">LayerNorm</span><span class="p">,</span> <span class="n">Linear</span>
<span class="kn">from</span> <span class="nn">...mapping</span> <span class="kn">import</span> <span class="n">Mapping</span>
<span class="kn">from</span> <span class="nn">...module</span> <span class="kn">import</span> <span class="n">Module</span><span class="p">,</span> <span class="n">ModuleList</span>
<span class="kn">from</span> <span class="nn">..modeling_utils</span> <span class="kn">import</span> <span class="n">QuantConfig</span>
<span class="kn">from</span> <span class="nn">.config</span> <span class="kn">import</span> <span class="n">BERTConfig</span>
<span class="kn">from</span> <span class="nn">.convert</span> <span class="kn">import</span> <span class="p">(</span><span class="n">load_hf_bert_base</span><span class="p">,</span> <span class="n">load_hf_bert_cls</span><span class="p">,</span> <span class="n">load_hf_bert_qa</span><span class="p">,</span>
<span class="n">load_weights_from_hf_model</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">BertEmbedding</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">vocab_size</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">type_vocab_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">vocab_embedding</span> <span class="o">=</span> <span class="n">Embedding</span><span class="p">(</span><span class="n">vocab_size</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">position_embedding</span> <span class="o">=</span> <span class="n">Embedding</span><span class="p">(</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">token_embedding</span> <span class="o">=</span> <span class="n">Embedding</span><span class="p">(</span><span class="n">type_vocab_size</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span> <span class="o">=</span> <span class="n">max_position_embeddings</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embedding_ln</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">normalized_shape</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">input_ids</span><span class="p">,</span> <span class="n">position_ids</span><span class="p">,</span> <span class="n">token_type_ids</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">vocab_embedding</span><span class="p">(</span><span class="n">input_ids</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding</span><span class="p">(</span><span class="n">position_ids</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">token_embedding</span><span class="p">(</span><span class="n">token_type_ids</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embedding_ln</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span>
<span class="k">class</span> <span class="nc">BertEncoderLayer</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">hidden_act</span><span class="o">=</span><span class="s1">&#39;relu&#39;</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">input_layernorm</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">normalized_shape</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention</span> <span class="o">=</span> <span class="n">BertAttention</span><span class="p">(</span>
<span class="n">hidden_size</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="o">=</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mlp</span> <span class="o">=</span> <span class="n">MLP</span><span class="p">(</span><span class="n">hidden_size</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">ffn_hidden_size</span><span class="o">=</span><span class="n">hidden_size</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span>
<span class="n">hidden_act</span><span class="o">=</span><span class="n">hidden_act</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">post_layernorm</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">normalized_shape</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="n">residual</span> <span class="o">=</span> <span class="n">hidden_states</span>
<span class="n">attention_output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="o">=</span><span class="n">attention_mask</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="o">=</span><span class="n">input_lengths</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="n">max_input_length</span><span class="p">)</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">residual</span> <span class="o">+</span> <span class="n">attention_output</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">input_layernorm</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">residual</span> <span class="o">=</span> <span class="n">hidden_states</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">mlp</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">residual</span> <span class="o">+</span> <span class="n">hidden_states</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">post_layernorm</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="k">return</span> <span class="n">hidden_states</span>
<span class="k">class</span> <span class="nc">BertBase</span><span class="p">(</span><span class="n">PretrainedModel</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39;</span>
<span class="sd"> Base class that provides from_huggingface() and prepare_inputs() methods</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="n">config_class</span> <span class="o">=</span> <span class="n">BERTConfig</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="n">BERTConfig</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
<span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">load_hf_bert</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">model_dir</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">load_model_on_cpu</span><span class="p">:</span> <span class="nb">bool</span><span class="p">,</span>
<span class="n">dtype</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">dtype</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Use as the abstractmethod, load corresponding HF model.</span>
<span class="sd"> Subclass must implement this method!</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">!=</span> <span class="s2">&quot;BertBase&quot;</span><span class="p">,</span> <span class="sa">f</span><span class="s2">&quot;Never call from BertBase class!&quot;</span>
<span class="k">if</span> <span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;BertModel&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">load_hf_bert_base</span><span class="p">(</span><span class="n">model_dir</span><span class="p">,</span> <span class="n">load_model_on_cpu</span><span class="p">,</span> <span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;BertForQuestionAnswering&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">load_hf_bert_qa</span><span class="p">(</span><span class="n">model_dir</span><span class="p">,</span> <span class="n">load_model_on_cpu</span><span class="p">,</span> <span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;BertForSequenceClassification&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">load_hf_bert_cls</span><span class="p">(</span><span class="n">model_dir</span><span class="p">,</span> <span class="n">load_model_on_cpu</span><span class="p">,</span> <span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="kc">False</span><span class="p">,</span> <span class="sa">f</span><span class="s2">&quot;Unknown class </span><span class="si">{</span><span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">!&quot;</span>
<span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">from_hugging_face</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">hf_model_or_dir</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="s1">&#39;transformers.PreTrainedModel&#39;</span><span class="p">],</span>
<span class="n">dtype</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">&#39;float16&#39;</span><span class="p">,</span>
<span class="n">mapping</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Mapping</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">quant_config</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">QuantConfig</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Create a BertModel object from give parameters</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="kn">import</span> <span class="nn">transformers</span>
<span class="k">assert</span> <span class="n">hf_model_or_dir</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">use_preloading</span> <span class="o">=</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">hf_model_or_dir</span><span class="p">,</span>
<span class="n">transformers</span><span class="o">.</span><span class="n">PreTrainedModel</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_preloading</span><span class="p">:</span>
<span class="n">hf_model</span> <span class="o">=</span> <span class="n">hf_model_or_dir</span>
<span class="n">hf_config_or_dir</span> <span class="o">=</span> <span class="n">hf_model</span><span class="o">.</span><span class="n">config</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">hf_model_dir</span> <span class="o">=</span> <span class="n">hf_model_or_dir</span>
<span class="n">hf_config_or_dir</span> <span class="o">=</span> <span class="n">hf_model_or_dir</span>
<span class="n">load_model_on_cpu</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;load_model_on_cpu&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">tllm_config</span> <span class="o">=</span> <span class="n">BERTConfig</span><span class="o">.</span><span class="n">from_hugging_face</span><span class="p">(</span>
<span class="n">hf_config_or_dir</span><span class="o">=</span><span class="n">hf_config_or_dir</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">,</span>
<span class="n">quant_config</span><span class="o">=</span><span class="n">quant_config</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="c1">#NOTE: override architecture info</span>
<span class="n">RobertaCls_mapping</span> <span class="o">=</span> <span class="p">{</span>
<span class="s2">&quot;BertModel&quot;</span><span class="p">:</span> <span class="s2">&quot;RobertaModel&quot;</span><span class="p">,</span>
<span class="s2">&quot;BertForQuestionAnswering&quot;</span><span class="p">:</span> <span class="s2">&quot;RobertaForQuestionAnswering&quot;</span><span class="p">,</span>
<span class="s2">&quot;BertForSequenceClassification&quot;</span><span class="p">:</span> <span class="s2">&quot;RobertaForSequenceClassification&quot;</span><span class="p">,</span>
<span class="p">}</span>
<span class="k">if</span> <span class="n">tllm_config</span><span class="o">.</span><span class="n">is_roberta</span><span class="p">:</span>
<span class="nb">setattr</span><span class="p">(</span><span class="n">tllm_config</span><span class="p">,</span> <span class="s1">&#39;architecture&#39;</span><span class="p">,</span>
<span class="n">RobertaCls_mapping</span><span class="p">[</span><span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span><span class="p">])</span>
<span class="k">else</span><span class="p">:</span>
<span class="nb">setattr</span><span class="p">(</span><span class="n">tllm_config</span><span class="p">,</span> <span class="s1">&#39;architecture&#39;</span><span class="p">,</span> <span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span><span class="p">)</span>
<span class="n">torch_dtype</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">float16</span> <span class="k">if</span> <span class="n">dtype</span> <span class="o">==</span> <span class="s1">&#39;float16&#39;</span> <span class="k">else</span> <span class="n">torch</span><span class="o">.</span><span class="n">float32</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">use_preloading</span><span class="p">:</span>
<span class="n">hf_model</span> <span class="o">=</span> <span class="bp">cls</span><span class="o">.</span><span class="n">load_hf_bert</span><span class="p">(</span><span class="n">model_dir</span><span class="o">=</span><span class="n">hf_model_dir</span><span class="p">,</span>
<span class="n">load_model_on_cpu</span><span class="o">=</span><span class="n">load_model_on_cpu</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">torch_dtype</span><span class="p">)</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">load_weights_from_hf_model</span><span class="p">(</span><span class="n">hf_model</span><span class="o">=</span><span class="n">hf_model</span><span class="p">,</span>
<span class="n">config</span><span class="o">=</span><span class="n">tllm_config</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="bp">cls</span><span class="p">(</span><span class="n">tllm_config</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="c1"># Override the PretrainedModel&#39;s meothd, can unify in the future.</span>
<span class="k">def</span> <span class="nf">prepare_inputs</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">max_batch_size</span><span class="p">,</span> <span class="n">max_input_len</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="n">remove_input_padding</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span>
<span class="c1"># opt_shape is set to half of max batch_size and seq_len by default</span>
<span class="c1"># tune this according to real data distribution</span>
<span class="n">bs_range</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="p">(</span><span class="n">max_batch_size</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="n">max_batch_size</span><span class="p">]</span>
<span class="n">inlen_range</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="p">(</span><span class="n">max_input_len</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="n">max_input_len</span><span class="p">]</span>
<span class="n">num_tokens_range</span> <span class="o">=</span> <span class="p">[</span>
<span class="mi">1</span><span class="p">,</span>
<span class="p">(</span><span class="n">max_input_len</span> <span class="o">*</span> <span class="n">max_batch_size</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span>
<span class="n">max_input_len</span> <span class="o">*</span> <span class="n">max_batch_size</span><span class="p">,</span>
<span class="p">]</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">remove_input_padding</span><span class="p">:</span>
<span class="n">input_ids</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;input_ids&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="p">[</span><span class="n">bs_range</span><span class="p">]),</span>
<span class="p">(</span><span class="s1">&#39;input_len&#39;</span><span class="p">,</span> <span class="p">[</span><span class="n">inlen_range</span><span class="p">])]),</span>
<span class="p">)</span>
<span class="c1"># also called segment_ids</span>
<span class="n">token_type_ids</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;token_type_ids&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="p">[</span><span class="n">bs_range</span><span class="p">]),</span>
<span class="p">(</span><span class="s1">&#39;input_len&#39;</span><span class="p">,</span> <span class="p">[</span><span class="n">inlen_range</span><span class="p">])]),</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">input_ids</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s2">&quot;input_ids&quot;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([(</span><span class="s2">&quot;num_tokens&quot;</span><span class="p">,</span> <span class="p">[</span><span class="n">num_tokens_range</span><span class="p">])]),</span>
<span class="p">)</span>
<span class="n">token_type_ids</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;token_type_ids&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([(</span><span class="s1">&#39;num_tokens&#39;</span><span class="p">,</span> <span class="p">[</span><span class="n">num_tokens_range</span><span class="p">])]),</span>
<span class="p">)</span>
<span class="n">position_ids</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;position_ids&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([(</span><span class="s1">&#39;num_tokens&#39;</span><span class="p">,</span> <span class="p">[</span><span class="n">num_tokens_range</span><span class="p">])]),</span>
<span class="p">)</span>
<span class="n">max_input_length</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s2">&quot;max_input_length&quot;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([(</span><span class="s2">&quot;max_input_length&quot;</span><span class="p">,</span> <span class="p">[</span><span class="n">inlen_range</span><span class="p">])]),</span>
<span class="p">)</span>
<span class="n">input_lengths</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;input_lengths&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="p">[</span><span class="n">bs_range</span><span class="p">])</span>
<span class="p">]))</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="p">{</span>
<span class="s1">&#39;input_ids&#39;</span><span class="p">:</span> <span class="n">input_ids</span><span class="p">,</span>
<span class="s1">&#39;input_lengths&#39;</span><span class="p">:</span> <span class="n">input_lengths</span><span class="p">,</span>
<span class="s1">&#39;token_type_ids&#39;</span><span class="p">:</span> <span class="n">token_type_ids</span><span class="p">,</span>
<span class="p">}</span>
<span class="k">if</span> <span class="n">remove_input_padding</span><span class="p">:</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;position_ids&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">position_ids</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;max_input_length&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">max_input_length</span>
<span class="k">return</span> <span class="n">inputs</span>
<div class="viewcode-block" id="BertModel">
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.BertModel">[docs]</a>
<span class="k">class</span> <span class="nc">BertModel</span><span class="p">(</span><span class="n">BertBase</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="n">BERTConfig</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">config</span> <span class="o">=</span> <span class="n">config</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">max_position_embeddings</span>
<span class="bp">self</span><span class="o">.</span><span class="n">padding_idx</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">pad_token_id</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_roberta</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">is_roberta</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embedding</span> <span class="o">=</span> <span class="n">BertEmbedding</span><span class="p">(</span>
<span class="n">vocab_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">vocab_size</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">type_vocab_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">type_vocab_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layers</span> <span class="o">=</span> <span class="n">ModuleList</span><span class="p">([</span>
<span class="n">BertEncoderLayer</span><span class="p">(</span>
<span class="n">hidden_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">hidden_act</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_act</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">config</span><span class="o">.</span><span class="n">num_hidden_layers</span><span class="p">)</span>
<span class="p">])</span>
<div class="viewcode-block" id="BertModel.forward">
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.BertModel.forward">[docs]</a>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">input_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">position_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">token_type_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="c1"># remove_input_padding requires these fields as explicit input</span>
<span class="n">mask</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">:</span>
<span class="n">seq_len_2d</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="n">shape</span><span class="p">(</span><span class="n">input_ids</span><span class="p">,</span> <span class="mi">1</span><span class="p">)])</span>
<span class="c1"># create position ids</span>
<span class="n">position_ids_buffer</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span>
<span class="n">np</span><span class="o">.</span><span class="n">expand_dims</span><span class="p">(</span>
<span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">),</span>
<span class="mi">0</span><span class="p">))</span>
<span class="n">tmp_position_ids</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">position_ids_buffer</span><span class="p">,</span>
<span class="n">starts</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="n">sizes</span><span class="o">=</span><span class="n">seq_len_2d</span><span class="p">)</span>
<span class="n">tmp_position_ids</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span><span class="n">tmp_position_ids</span><span class="p">,</span> <span class="n">shape</span><span class="p">(</span><span class="n">input_ids</span><span class="p">))</span> <span class="c1">#BxL</span>
<span class="n">tmp_input_lengths</span> <span class="o">=</span> <span class="n">unsqueeze</span><span class="p">(</span><span class="n">input_lengths</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="c1">#Bx1</span>
<span class="n">tmp_input_lengths</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span><span class="n">tmp_input_lengths</span><span class="p">,</span>
<span class="n">shape</span><span class="p">(</span><span class="n">input_ids</span><span class="p">))</span> <span class="c1">#BxL</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">tmp_position_ids</span> <span class="o">&lt;</span> <span class="n">tmp_input_lengths</span> <span class="c1"># BxL</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">mask</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="s1">&#39;int32&#39;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">position_ids</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_roberta</span><span class="p">:</span>
<span class="c1"># see create_position_ids_from_input_ids() in https://github.com/huggingface/transformers/blob/main/src/transformers/models/roberta/modeling_roberta.py</span>
<span class="n">position_ids</span> <span class="o">=</span> <span class="p">(</span><span class="n">tmp_position_ids</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">mask</span>
<span class="n">position_ids</span> <span class="o">=</span> <span class="n">position_ids</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">padding_idx</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">position_ids</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">position_ids_buffer</span><span class="p">,</span>
<span class="n">starts</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="n">sizes</span><span class="o">=</span><span class="n">seq_len_2d</span><span class="p">)</span>
<span class="n">position_ids</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span><span class="n">position_ids</span><span class="p">,</span> <span class="n">shape</span><span class="p">(</span><span class="n">input_ids</span><span class="p">))</span>
<span class="c1"># create token_type_ids</span>
<span class="k">if</span> <span class="n">token_type_ids</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">token_type_ids_buffer</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span>
<span class="n">np</span><span class="o">.</span><span class="n">expand_dims</span><span class="p">(</span>
<span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">),</span>
<span class="mi">0</span><span class="p">))</span>
<span class="n">token_type_ids</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">token_type_ids_buffer</span><span class="p">,</span>
<span class="n">starts</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="n">sizes</span><span class="o">=</span><span class="n">seq_len_2d</span><span class="p">)</span>
<span class="n">token_type_ids</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span><span class="n">token_type_ids</span><span class="p">,</span> <span class="n">shape</span><span class="p">(</span><span class="n">input_ids</span><span class="p">))</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="n">input_ids</span><span class="p">,</span> <span class="n">position_ids</span><span class="p">,</span> <span class="n">token_type_ids</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_network_output</span><span class="p">(</span><span class="s1">&#39;embedding_output&#39;</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">)</span>
<span class="k">for</span> <span class="n">idx</span><span class="p">,</span> <span class="n">layer</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="p">):</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">layer</span><span class="p">(</span><span class="n">hidden_states</span><span class="o">=</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="o">=</span><span class="n">input_lengths</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="n">max_input_length</span><span class="p">)</span>
<span class="c1"># keep the last layer output name as hidden_states</span>
<span class="k">if</span> <span class="p">((</span><span class="n">idx</span> <span class="o">==</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">num_hidden_layers</span> <span class="o">-</span> <span class="mi">1</span><span class="p">))</span> <span class="ow">and</span>
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">architecture</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;BertModel&quot;</span><span class="p">,</span> <span class="s2">&quot;RobertaModel&quot;</span><span class="p">])):</span>
<span class="n">hidden_states</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;hidden_states&#39;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_network_output</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;layer_</span><span class="si">{</span><span class="n">idx</span><span class="si">}</span><span class="s2">_output&quot;</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">)</span>
<span class="k">return</span> <span class="n">hidden_states</span></div>
</div>
<span class="n">RobertaModel</span> <span class="o">=</span> <span class="n">BertModel</span>
<div class="viewcode-block" id="BertForQuestionAnswering">
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.BertForQuestionAnswering">[docs]</a>
<span class="k">class</span> <span class="nc">BertForQuestionAnswering</span><span class="p">(</span><span class="n">BertBase</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="n">BERTConfig</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bert</span> <span class="o">=</span> <span class="n">BertModel</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_labels</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">num_labels</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qa_outputs</span> <span class="o">=</span> <span class="n">Linear</span><span class="p">(</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">config</span><span class="o">.</span><span class="n">num_labels</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<div class="viewcode-block" id="BertForQuestionAnswering.forward">
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.BertForQuestionAnswering.forward">[docs]</a>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">input_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">token_type_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">position_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="n">remove_input_padding</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span>
<span class="k">if</span> <span class="n">remove_input_padding</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">token_type_ids</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> \
<span class="n">position_ids</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> \
<span class="n">max_input_length</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">,</span> \
<span class="s2">&quot;token_type_ids, position_ids, max_input_length is required &quot;</span> \
<span class="s2">&quot;in remove_input_padding mode&quot;</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bert</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="n">input_ids</span><span class="o">=</span><span class="n">input_ids</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="o">=</span><span class="n">input_lengths</span><span class="p">,</span>
<span class="n">token_type_ids</span><span class="o">=</span><span class="n">token_type_ids</span><span class="p">,</span>
<span class="n">position_ids</span><span class="o">=</span><span class="n">position_ids</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="o">=</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="n">max_input_length</span><span class="p">)</span>
<span class="n">logits</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qa_outputs</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">logits</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;logits&#39;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">logits_dtype</span><span class="p">)</span>
<span class="k">return</span> <span class="n">logits</span></div>
</div>
<span class="n">RobertaForQuestionAnswering</span> <span class="o">=</span> <span class="n">BertForQuestionAnswering</span>
<span class="k">class</span> <span class="nc">BertPooler</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">dtype</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dense</span> <span class="o">=</span> <span class="n">Linear</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">activation</span> <span class="o">=</span> <span class="n">ACT2FN</span><span class="p">[</span><span class="s1">&#39;tanh&#39;</span><span class="p">]</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">input_lengths</span><span class="p">,</span> <span class="n">remove_input_padding</span><span class="p">):</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">remove_input_padding</span><span class="p">:</span>
<span class="c1"># We &quot;pool&quot; the model by simply taking the hidden state corresponding</span>
<span class="c1"># to the first token.</span>
<span class="n">first_token_tensor</span> <span class="o">=</span> <span class="n">select</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># when remove_input_padding is enabled, the shape of hidden_states is [num_tokens, hidden_size]</span>
<span class="c1"># We can take the first token of each sequence according to input_lengths,</span>
<span class="c1"># and then do pooling similar to padding mode.</span>
<span class="c1"># For example, if input_lengths is [8, 5, 6], then the indices of first tokens</span>
<span class="c1"># should be [0, 8, 13]</span>
<span class="n">first_token_indices</span> <span class="o">=</span> <span class="n">cumsum</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="mi">0</span><span class="p">,</span>
<span class="nb">slice</span><span class="p">(</span><span class="n">input_lengths</span><span class="p">,</span>
<span class="n">starts</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">sizes</span><span class="o">=</span><span class="p">(</span><span class="n">shape</span><span class="p">(</span><span class="n">input_lengths</span><span class="p">)</span> <span class="o">-</span>
<span class="n">constant</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">))))</span>
<span class="p">]),</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">first_token_tensor</span> <span class="o">=</span> <span class="n">index_select</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">first_token_indices</span><span class="p">)</span>
<span class="n">pooled_output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="n">first_token_tensor</span><span class="p">)</span>
<span class="n">pooled_output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">activation</span><span class="p">(</span><span class="n">pooled_output</span><span class="p">)</span>
<span class="k">return</span> <span class="n">pooled_output</span>
<span class="k">class</span> <span class="nc">RobertaClassificationHead</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Head for sentence-level classification tasks.&quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">dtype</span><span class="p">,</span> <span class="n">num_labels</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dense</span> <span class="o">=</span> <span class="n">Linear</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">out_proj</span> <span class="o">=</span> <span class="n">Linear</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">num_labels</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">input_lengths</span><span class="p">,</span> <span class="n">remove_input_padding</span><span class="p">):</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">remove_input_padding</span><span class="p">:</span>
<span class="c1"># We &quot;pool&quot; the model by simply taking the hidden state corresponding</span>
<span class="c1"># to the first token.</span>
<span class="n">first_token_tensor</span> <span class="o">=</span> <span class="n">select</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># when remove_input_padding is enabled, the shape of hidden_states is [num_tokens, hidden_size]</span>
<span class="c1"># We can take the first token of each sequence according to input_lengths,</span>
<span class="c1"># and then do pooling similar to padding mode.</span>
<span class="c1"># For example, if input_lengths is [8, 5, 6], then the indices of first tokens</span>
<span class="c1"># should be [0, 8, 13]</span>
<span class="n">first_token_indices</span> <span class="o">=</span> <span class="n">cumsum</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="mi">0</span><span class="p">,</span>
<span class="nb">slice</span><span class="p">(</span><span class="n">input_lengths</span><span class="p">,</span>
<span class="n">starts</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">sizes</span><span class="o">=</span><span class="p">(</span><span class="n">shape</span><span class="p">(</span><span class="n">input_lengths</span><span class="p">)</span> <span class="o">-</span>
<span class="n">constant</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">))))</span>
<span class="p">]),</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">first_token_tensor</span> <span class="o">=</span> <span class="n">index_select</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">first_token_indices</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="n">first_token_tensor</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">ACT2FN</span><span class="p">[</span><span class="s1">&#39;tanh&#39;</span><span class="p">](</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_proj</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span>
<div class="viewcode-block" id="BertForSequenceClassification">
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.BertForSequenceClassification">[docs]</a>
<span class="k">class</span> <span class="nc">BertForSequenceClassification</span><span class="p">(</span><span class="n">BertBase</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="n">BERTConfig</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">config</span> <span class="o">=</span> <span class="n">config</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_roberta</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">is_roberta</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bert</span> <span class="o">=</span> <span class="n">BertModel</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_labels</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">num_labels</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">config</span><span class="o">.</span><span class="n">is_roberta</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pooler</span> <span class="o">=</span> <span class="n">BertPooler</span><span class="p">(</span><span class="n">hidden_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">classifier</span> <span class="o">=</span> <span class="n">Linear</span><span class="p">(</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">config</span><span class="o">.</span><span class="n">num_labels</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">classifier</span> <span class="o">=</span> <span class="n">RobertaClassificationHead</span><span class="p">(</span>
<span class="n">hidden_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_labels</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">num_labels</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<div class="viewcode-block" id="BertForSequenceClassification.forward">
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.BertForSequenceClassification.forward">[docs]</a>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">input_ids</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="p">,</span>
<span class="n">token_type_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">position_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="n">remove_input_padding</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span>
<span class="c1"># required as explicit input in remove_input_padding mode</span>
<span class="c1"># see examples/bert/run_remove_input_padding.py for how to create them from input_ids and input_lengths</span>
<span class="k">if</span> <span class="n">remove_input_padding</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">token_type_ids</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> \
<span class="n">position_ids</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> \
<span class="n">max_input_length</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">,</span> \
<span class="s2">&quot;token_type_ids, position_ids, max_input_length is required &quot;</span> \
<span class="s2">&quot;in remove_input_padding mode&quot;</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bert</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="n">input_ids</span><span class="o">=</span><span class="n">input_ids</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="o">=</span><span class="n">input_lengths</span><span class="p">,</span>
<span class="n">token_type_ids</span><span class="o">=</span><span class="n">token_type_ids</span><span class="p">,</span>
<span class="n">position_ids</span><span class="o">=</span><span class="n">position_ids</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="o">=</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="n">max_input_length</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_roberta</span><span class="p">:</span>
<span class="n">pooled_output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pooler</span><span class="p">(</span>
<span class="n">hidden_states</span><span class="o">=</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="o">=</span><span class="n">input_lengths</span><span class="p">,</span>
<span class="n">remove_input_padding</span><span class="o">=</span><span class="n">remove_input_padding</span><span class="p">)</span>
<span class="n">logits</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="p">(</span><span class="n">pooled_output</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">logits</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="p">(</span><span class="n">hidden_states</span><span class="o">=</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="o">=</span><span class="n">input_lengths</span><span class="p">,</span>
<span class="n">remove_input_padding</span><span class="o">=</span><span class="n">remove_input_padding</span><span class="p">)</span>
<span class="n">logits</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;logits&#39;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">logits_dtype</span><span class="p">)</span>
<span class="k">return</span> <span class="n">logits</span></div>
</div>
<span class="n">RobertaForSequenceClassification</span> <span class="o">=</span> <span class="n">BertForSequenceClassification</span>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<jinja2.runtime.BlockReference object at 0x7f1ac642e0c0>
<div class="footer">
<p>
Copyright © 2024 NVIDIA Corporation
</p>
<p>
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/" target="_blank" rel="noopener"
data-cms-ai="0">Privacy Policy</a> |
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/" target="_blank" rel="noopener"
data-cms-ai="0">Manage My Privacy</a> |
<a class="Link" href="https://www.nvidia.com/en-us/preferences/start/" target="_blank" rel="noopener"
data-cms-ai="0">Do Not Sell or Share My Data</a> |
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/" target="_blank"
rel="noopener" data-cms-ai="0">Terms of Service</a> |
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/" target="_blank" rel="noopener"
data-cms-ai="0">Accessibility</a> |
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/" target="_blank"
rel="noopener" data-cms-ai="0">Corporate Policies</a> |
<a class="Link" href="https://www.nvidia.com/en-us/product-security/" target="_blank" rel="noopener"
data-cms-ai="0">Product Security</a> |
<a class="Link" href="https://www.nvidia.com/en-us/contact/" target="_blank" rel="noopener"
data-cms-ai="0">Contact</a>
</p>
</div>
</div>
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>