mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
474 lines
53 KiB
HTML
474 lines
53 KiB
HTML
|
|
|
|
<!DOCTYPE html>
|
|
<html class="writer-html5" lang="en" data-content_root="../../../../">
|
|
<head>
|
|
<meta charset="utf-8" />
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
|
<title>tensorrt_llm.models.llama.config — tensorrt_llm documentation</title>
|
|
<link rel="stylesheet" type="text/css" href="../../../../_static/pygments.css?v=80d5e7a1" />
|
|
<link rel="stylesheet" type="text/css" href="../../../../_static/css/theme.css?v=e59714d7" />
|
|
<link rel="stylesheet" type="text/css" href="../../../../_static/copybutton.css?v=76b2166b" />
|
|
|
|
|
|
<script src="../../../../_static/jquery.js?v=5d32c60e"></script>
|
|
<script src="../../../../_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
|
|
<script src="../../../../_static/documentation_options.js?v=5929fcd5"></script>
|
|
<script src="../../../../_static/doctools.js?v=9bcbadda"></script>
|
|
<script src="../../../../_static/sphinx_highlight.js?v=dc90522c"></script>
|
|
<script src="../../../../_static/clipboard.min.js?v=a7894cd8"></script>
|
|
<script src="../../../../_static/copybutton.js?v=65e89d2a"></script>
|
|
<script src="../../../../_static/js/theme.js"></script>
|
|
<link rel="index" title="Index" href="../../../../genindex.html" />
|
|
<link rel="search" title="Search" href="../../../../search.html" />
|
|
</head>
|
|
|
|
<body class="wy-body-for-nav">
|
|
<div class="wy-grid-for-nav">
|
|
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
|
<div class="wy-side-scroll">
|
|
<div class="wy-side-nav-search" >
|
|
|
|
|
|
|
|
<a href="../../../../index.html" class="icon icon-home">
|
|
tensorrt_llm
|
|
</a>
|
|
<div role="search">
|
|
<form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
|
|
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
|
|
<input type="hidden" name="check_keywords" value="yes" />
|
|
<input type="hidden" name="area" value="default" />
|
|
</form>
|
|
</div>
|
|
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
|
|
<p class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../overview.html">Overview</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../quick-start-guide.html">Quick Start Guide</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../key-features.html">Key Features</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../release-notes.html">Release Notes</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Installation</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../installation/linux.html">Installing on Linux</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../installation/windows.html">Installing on Windows</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../installation/build-from-source-windows.html">Building from Source Code on Windows</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../installation/grace-hopper.html">Installing on Grace Hopper</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">LLM API</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api/index.html">API Introduction</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api/reference.html">API Reference</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">LLM API Examples</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api-examples/index.html">LLM Examples Introduction</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api-examples/customization.html">Common Customizations</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api-examples/llm_api_examples.html">Examples</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Model Definition API</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.layers.html">Layers</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.functional.html">Functionals</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.models.html">Models</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.plugin.html">Plugin</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.quantization.html">Quantization</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.runtime.html">Runtime</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">C++ API</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../_cpp_gen/executor.html">Executor</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../_cpp_gen/runtime.html">Runtime</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Command-Line Reference</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../commands/trtllm-build.html">trtllm-build</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../commands/trtllm-serve.html">trtllm-serve</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Architecture</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/overview.html">TensorRT-LLM Architecture</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/core-concepts.html">Model Definition</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/core-concepts.html#compilation">Compilation</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/core-concepts.html#runtime">Runtime</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/core-concepts.html#multi-gpu-and-multi-node-support">Multi-GPU and Multi-Node Support</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/checkpoint.html">TensorRT-LLM Checkpoint</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/workflow.html">TensorRT-LLM Build Workflow</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/add-model.html">Adding a Model</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Advanced</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/gpt-attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/gpt-runtime.html">C++ GPT Runtime</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/executor.html">Executor API</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/graph-rewriting.html">Graph Rewriting Module</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/inference-request.html">Inference Request</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/inference-request.html#responses">Responses</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/lora.html">Run gpt-2b + LoRA using GptManager / cpp runtime</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/expert-parallelism.html">Expert Parallelism in TensorRT-LLM</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/kv-cache-reuse.html">KV cache reuse</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/speculative-decoding.html">Speculative Sampling</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/disaggregated-service.html">Disaggregated-Service (experimental)</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Performance</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../performance/perf-overview.html">Overview</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../performance/perf-benchmarking.html">Benchmarking</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../performance/perf-best-practices.html">Best Practices</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../performance/perf-analysis.html">Performance Analysis</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Reference</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../reference/troubleshooting.html">Troubleshooting</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../reference/support-matrix.html">Support Matrix</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../reference/precision.html">Numerical Precision</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../reference/memory.html">Memory Usage of TensorRT-LLM</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Blogs</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT-LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT-LLM</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/Falcon180B-H200.html">Falcon-180B on a single H200 GPU with INT4 AWQ, and 6.7x faster Llama-70B over A100</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/quantization-in-TRT-LLM.html">Speed up inference with SOTA quantization techniques in TRT-LLM</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
|
|
</ul>
|
|
|
|
</div>
|
|
</div>
|
|
</nav>
|
|
|
|
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
|
|
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
|
<a href="../../../../index.html">tensorrt_llm</a>
|
|
</nav>
|
|
|
|
<div class="wy-nav-content">
|
|
<div class="rst-content">
|
|
<div role="navigation" aria-label="Page navigation">
|
|
<ul class="wy-breadcrumbs">
|
|
<li><a href="../../../../index.html" class="icon icon-home" aria-label="Home"></a></li>
|
|
<li class="breadcrumb-item"><a href="../../../index.html">Module code</a></li>
|
|
<li class="breadcrumb-item active">tensorrt_llm.models.llama.config</li>
|
|
<li class="wy-breadcrumbs-aside">
|
|
</li>
|
|
</ul>
|
|
<hr/>
|
|
</div>
|
|
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
|
<div itemprop="articleBody">
|
|
|
|
<h1>Source code for tensorrt_llm.models.llama.config</h1><div class="highlight"><pre>
|
|
<span></span><span class="c1"># SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.</span>
|
|
<span class="c1"># SPDX-License-Identifier: Apache-2.0</span>
|
|
<span class="c1">#</span>
|
|
<span class="c1"># Licensed under the Apache License, Version 2.0 (the "License");</span>
|
|
<span class="c1"># you may not use this file except in compliance with the License.</span>
|
|
<span class="c1"># You may obtain a copy of the License at</span>
|
|
<span class="c1">#</span>
|
|
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
|
|
<span class="c1">#</span>
|
|
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
|
|
<span class="c1"># distributed under the License is distributed on an "AS IS" BASIS,</span>
|
|
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
|
|
<span class="c1"># See the License for the specific language governing permissions and</span>
|
|
<span class="c1"># limitations under the License.</span>
|
|
<span class="kn">import</span> <span class="nn">json</span>
|
|
<span class="kn">import</span> <span class="nn">sys</span>
|
|
<span class="kn">from</span> <span class="nn">pathlib</span> <span class="kn">import</span> <span class="n">Path</span>
|
|
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Union</span>
|
|
|
|
<span class="kn">from</span> <span class="nn">...layers</span> <span class="kn">import</span> <span class="n">MoeConfig</span>
|
|
<span class="kn">from</span> <span class="nn">...mapping</span> <span class="kn">import</span> <span class="n">Mapping</span>
|
|
<span class="kn">from</span> <span class="nn">..convert_utils</span> <span class="kn">import</span> <span class="n">infer_dtype</span>
|
|
<span class="kn">from</span> <span class="nn">..modeling_utils</span> <span class="kn">import</span> <span class="n">PretrainedConfig</span><span class="p">,</span> <span class="n">QuantConfig</span>
|
|
|
|
|
|
<div class="viewcode-block" id="LLaMAConfig">
|
|
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.LLaMAConfig">[docs]</a>
|
|
<span class="k">class</span> <span class="nc">LLaMAConfig</span><span class="p">(</span><span class="n">PretrainedConfig</span><span class="p">):</span>
|
|
|
|
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
|
|
<span class="o">*</span><span class="p">,</span>
|
|
<span class="n">mlp_bias</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
|
|
<span class="n">attn_bias</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
|
|
<span class="n">rotary_base</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">10000.0</span><span class="p">,</span>
|
|
<span class="n">rotary_scaling</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">dict</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
|
|
<span class="n">residual_mlp</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
|
|
<span class="n">disable_weight_only_quant_plugin</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
|
|
<span class="n">moe</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">MoeConfig</span><span class="p">,</span> <span class="nb">dict</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
|
|
<span class="n">remove_duplicated_kv_heads</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
|
|
<span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">mlp_bias</span> <span class="o">=</span> <span class="n">mlp_bias</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">attn_bias</span> <span class="o">=</span> <span class="n">attn_bias</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_base</span> <span class="o">=</span> <span class="n">rotary_base</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_scaling</span> <span class="o">=</span> <span class="n">rotary_scaling</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">residual_mlp</span> <span class="o">=</span> <span class="n">residual_mlp</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">disable_weight_only_quant_plugin</span> <span class="o">=</span> <span class="n">disable_weight_only_quant_plugin</span>
|
|
<span class="k">if</span> <span class="n">moe</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
|
|
<span class="c1"># Legacy MOE config fields</span>
|
|
<span class="n">moe</span> <span class="o">=</span> <span class="n">MoeConfig</span><span class="p">(</span>
|
|
<span class="n">num_experts</span><span class="o">=</span><span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">'moe_num_experts'</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
|
|
<span class="n">top_k</span><span class="o">=</span><span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">'moe_top_k'</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
|
|
<span class="n">normalization_mode</span><span class="o">=</span><span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span>
|
|
<span class="s1">'moe_normalization_mode'</span><span class="p">,</span>
|
|
<span class="n">MoeConfig</span><span class="o">.</span><span class="n">ExpertScaleNormalizationMode</span><span class="o">.</span><span class="n">RENORMALIZE</span><span class="p">))</span>
|
|
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">moe</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span>
|
|
<span class="n">moe</span> <span class="o">=</span> <span class="n">MoeConfig</span><span class="o">.</span><span class="n">from_dict</span><span class="p">(</span><span class="n">moe</span><span class="p">)</span>
|
|
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">moe</span><span class="p">,</span> <span class="n">MoeConfig</span><span class="p">)</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">moe</span> <span class="o">=</span> <span class="n">moe</span><span class="o">.</span><span class="n">validate</span><span class="p">()</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">remove_duplicated_kv_heads</span> <span class="o">=</span> <span class="n">remove_duplicated_kv_heads</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">fc_after_embed</span> <span class="o">=</span> <span class="kc">False</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">use_input_layernorm_in_first_layer</span> <span class="o">=</span> <span class="kc">True</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">use_last_layernorm</span> <span class="o">=</span> <span class="kc">True</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">layer_idx_offset</span> <span class="o">=</span> <span class="mi">0</span>
|
|
|
|
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
|
|
|
<div class="viewcode-block" id="LLaMAConfig.to_dict">
|
|
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.LLaMAConfig.to_dict">[docs]</a>
|
|
<span class="k">def</span> <span class="nf">to_dict</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="n">output</span> <span class="o">=</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">to_dict</span><span class="p">()</span>
|
|
<span class="c1"># Serialize the fields added in LLaMAConfig</span>
|
|
<span class="n">output</span><span class="p">[</span><span class="s1">'mlp_bias'</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">mlp_bias</span>
|
|
<span class="n">output</span><span class="p">[</span><span class="s1">'attn_bias'</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attn_bias</span>
|
|
<span class="n">output</span><span class="p">[</span><span class="s1">'rotary_base'</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_base</span>
|
|
<span class="n">output</span><span class="p">[</span><span class="s1">'rotary_scaling'</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_scaling</span>
|
|
<span class="n">output</span><span class="p">[</span><span class="s1">'residual_mlp'</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">residual_mlp</span>
|
|
<span class="n">output</span><span class="p">[</span>
|
|
<span class="s1">'disable_weight_only_quant_plugin'</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">disable_weight_only_quant_plugin</span>
|
|
<span class="n">output</span><span class="p">[</span><span class="s1">'fc_after_embed'</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc_after_embed</span>
|
|
<span class="n">output</span><span class="p">[</span>
|
|
<span class="s1">'use_input_layernorm_in_first_layer'</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_input_layernorm_in_first_layer</span>
|
|
<span class="n">output</span><span class="p">[</span><span class="s1">'use_last_layernorm'</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_last_layernorm</span>
|
|
<span class="n">output</span><span class="p">[</span><span class="s1">'layer_idx_offset'</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer_idx_offset</span>
|
|
<span class="n">output</span><span class="p">[</span><span class="s1">'moe'</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">moe</span><span class="o">.</span><span class="n">to_dict</span><span class="p">()</span>
|
|
<span class="k">return</span> <span class="n">output</span></div>
|
|
|
|
|
|
<div class="viewcode-block" id="LLaMAConfig.from_hugging_face">
|
|
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.LLaMAConfig.from_hugging_face">[docs]</a>
|
|
<span class="nd">@classmethod</span>
|
|
<span class="k">def</span> <span class="nf">from_hugging_face</span><span class="p">(</span>
|
|
<span class="bp">cls</span><span class="p">,</span>
|
|
<span class="n">hf_config_or_dir</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="s1">'transformers.PretrainedConfig'</span><span class="p">],</span>
|
|
<span class="n">dtype</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">'auto'</span><span class="p">,</span>
|
|
<span class="n">mapping</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Mapping</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
|
|
<span class="n">quant_config</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">QuantConfig</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
|
|
<span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
<span class="kn">import</span> <span class="nn">transformers</span>
|
|
|
|
<span class="n">trust_remote_code</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">'trust_remote_code'</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">hf_config_or_dir</span><span class="p">,</span> <span class="n">transformers</span><span class="o">.</span><span class="n">PretrainedConfig</span><span class="p">):</span>
|
|
<span class="n">hf_config</span> <span class="o">=</span> <span class="n">hf_config_or_dir</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">hf_config_dir</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">hf_config_or_dir</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="s2">"vila"</span> <span class="ow">in</span> <span class="n">hf_config_dir</span><span class="p">:</span>
|
|
<span class="n">sys</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">hf_config_dir</span> <span class="o">+</span> <span class="s2">"/../VILA"</span><span class="p">)</span>
|
|
<span class="kn">from</span> <span class="nn">llava.model</span> <span class="kn">import</span> <span class="n">LlavaLlamaConfig</span> <span class="c1"># noqa</span>
|
|
<span class="kn">from</span> <span class="nn">llava.model</span> <span class="kn">import</span> <span class="n">LlavaLlamaModel</span>
|
|
<span class="n">transformers</span><span class="o">.</span><span class="n">AutoConfig</span><span class="o">.</span><span class="n">register</span><span class="p">(</span><span class="s2">"llava_llama"</span><span class="p">,</span>
|
|
<span class="n">LlavaLlamaConfig</span><span class="p">)</span>
|
|
<span class="n">transformers</span><span class="o">.</span><span class="n">AutoModelForCausalLM</span><span class="o">.</span><span class="n">register</span><span class="p">(</span>
|
|
<span class="n">LlavaLlamaConfig</span><span class="p">,</span> <span class="n">LlavaLlamaModel</span><span class="p">)</span>
|
|
|
|
<span class="n">hf_config</span> <span class="o">=</span> <span class="n">transformers</span><span class="o">.</span><span class="n">AutoConfig</span><span class="o">.</span><span class="n">from_pretrained</span><span class="p">(</span>
|
|
<span class="n">hf_config_dir</span><span class="p">,</span> <span class="n">trust_remote_code</span><span class="o">=</span><span class="n">trust_remote_code</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="n">hf_config</span><span class="o">.</span><span class="n">model_type</span> <span class="o">==</span> <span class="s2">"llava"</span><span class="p">:</span>
|
|
<span class="c1"># LLaVA = Vision model + Llama LLM</span>
|
|
<span class="c1"># We load a llava config and use its' text config as llama config</span>
|
|
<span class="kn">from</span> <span class="nn">transformers</span> <span class="kn">import</span> <span class="n">LlavaConfig</span>
|
|
<span class="n">hf_config</span> <span class="o">=</span> <span class="n">LlavaConfig</span><span class="o">.</span><span class="n">from_pretrained</span><span class="p">(</span>
|
|
<span class="n">hf_config_dir</span><span class="p">)</span><span class="o">.</span><span class="n">text_config</span>
|
|
<span class="k">if</span> <span class="n">hf_config</span><span class="o">.</span><span class="n">model_type</span> <span class="o">==</span> <span class="s2">"llava_next"</span><span class="p">:</span>
|
|
<span class="kn">from</span> <span class="nn">transformers</span> <span class="kn">import</span> <span class="n">LlavaNextConfig</span>
|
|
<span class="n">hf_config</span> <span class="o">=</span> <span class="n">LlavaNextConfig</span><span class="o">.</span><span class="n">from_pretrained</span><span class="p">(</span>
|
|
<span class="n">hf_config_dir</span><span class="p">)</span><span class="o">.</span><span class="n">text_config</span>
|
|
<span class="k">if</span> <span class="n">hf_config</span><span class="o">.</span><span class="n">model_type</span> <span class="o">==</span> <span class="s2">"llava_llama"</span><span class="p">:</span>
|
|
<span class="n">hf_config</span><span class="o">.</span><span class="n">llm_cfg</span><span class="p">[</span><span class="s2">"architecture"</span><span class="p">]</span> <span class="o">=</span> <span class="n">hf_config</span><span class="o">.</span><span class="n">llm_cfg</span><span class="p">[</span>
|
|
<span class="s2">"architectures"</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
|
|
<span class="n">hf_config</span><span class="o">.</span><span class="n">llm_cfg</span><span class="p">[</span><span class="s2">"dtype"</span><span class="p">]</span> <span class="o">=</span> <span class="n">hf_config</span><span class="o">.</span><span class="n">llm_cfg</span><span class="p">[</span><span class="s2">"torch_dtype"</span><span class="p">]</span>
|
|
<span class="n">hf_config</span> <span class="o">=</span> <span class="n">PretrainedConfig</span><span class="o">.</span><span class="n">from_dict</span><span class="p">(</span><span class="n">hf_config</span><span class="o">.</span><span class="n">llm_cfg</span><span class="p">)</span>
|
|
|
|
<span class="n">num_key_value_heads</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">hf_config</span><span class="p">,</span> <span class="s2">"num_key_value_heads"</span><span class="p">,</span>
|
|
<span class="n">hf_config</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="n">hf_config</span><span class="o">.</span><span class="n">model_type</span> <span class="o">==</span> <span class="s2">"exaone"</span><span class="p">:</span>
|
|
<span class="n">hidden_act</span> <span class="o">=</span> <span class="n">hf_config</span><span class="o">.</span><span class="n">activation_function</span>
|
|
<span class="c1"># NOTE</span>
|
|
<span class="c1"># EXAONE also uses RMS norm but they represent as layer_norm_epsilon.</span>
|
|
<span class="n">norm_epsilon</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">hf_config</span><span class="p">,</span> <span class="s2">"layer_norm_epsilon"</span><span class="p">,</span> <span class="mf">1e-5</span><span class="p">)</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">hidden_act</span> <span class="o">=</span> <span class="n">hf_config</span><span class="o">.</span><span class="n">hidden_act</span>
|
|
<span class="n">norm_epsilon</span> <span class="o">=</span> <span class="n">hf_config</span><span class="o">.</span><span class="n">rms_norm_eps</span>
|
|
<span class="n">head_dim</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span>
|
|
<span class="n">hf_config</span><span class="p">,</span> <span class="s2">"head_dim"</span><span class="p">,</span>
|
|
<span class="n">hf_config</span><span class="o">.</span><span class="n">hidden_size</span> <span class="o">//</span> <span class="n">hf_config</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">)</span>
|
|
<span class="n">head_size</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">hf_config</span><span class="p">,</span> <span class="s2">"kv_channels"</span><span class="p">,</span> <span class="n">head_dim</span><span class="p">)</span>
|
|
<span class="n">attn_bias</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">hf_config</span><span class="p">,</span> <span class="s1">'bias'</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span> <span class="ow">or</span> <span class="nb">getattr</span><span class="p">(</span>
|
|
<span class="n">hf_config</span><span class="p">,</span> <span class="s1">'attention_bias'</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
|
|
<span class="n">rotary_scaling</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">hf_config</span><span class="p">,</span> <span class="s2">"rope_scaling"</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
|
|
<span class="n">rotary_base</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">hf_config</span><span class="p">,</span> <span class="s2">"rope_theta"</span><span class="p">,</span> <span class="mf">10000.0</span><span class="p">)</span>
|
|
<span class="n">residual_mlp</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">hf_config</span><span class="p">,</span> <span class="s2">"parallel_attn_mlp_res"</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
|
|
<span class="n">disable_weight_only_quant_plugin</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span>
|
|
<span class="s1">'disable_weight_only_quant_plugin'</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
|
|
<span class="n">remove_duplicated_kv_heads</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">'remove_duplicated_kv_heads'</span><span class="p">,</span>
|
|
<span class="kc">False</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="n">hf_config</span><span class="o">.</span><span class="n">model_type</span> <span class="o">==</span> <span class="s2">"mixtral"</span> <span class="ow">or</span> <span class="n">hf_config</span><span class="o">.</span><span class="n">model_type</span> <span class="o">==</span> <span class="s2">"arctic"</span><span class="p">:</span>
|
|
<span class="c1"># HF LLaMA-type models are implicitly using gated activation.</span>
|
|
<span class="c1"># With our MoE implementation, we must make it explicit</span>
|
|
<span class="n">hidden_act</span> <span class="o">=</span> <span class="s2">"swiglu"</span>
|
|
<span class="n">moe_normalization_mode</span> <span class="o">=</span> <span class="n">MoeConfig</span><span class="o">.</span><span class="n">ExpertScaleNormalizationMode</span><span class="o">.</span><span class="n">RENORMALIZE</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">moe_normalization_mode</span> <span class="o">=</span> <span class="kc">None</span>
|
|
<span class="n">moe_num_experts</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">hf_config</span><span class="p">,</span> <span class="s2">"num_local_experts"</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
|
|
<span class="n">moe_top_k</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">hf_config</span><span class="p">,</span> <span class="s2">"num_experts_per_tok"</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
|
|
<span class="n">moe_config</span> <span class="o">=</span> <span class="n">MoeConfig</span><span class="p">(</span><span class="n">num_experts</span><span class="o">=</span><span class="n">moe_num_experts</span><span class="p">,</span>
|
|
<span class="n">top_k</span><span class="o">=</span><span class="n">moe_top_k</span><span class="p">,</span>
|
|
<span class="n">normalization_mode</span><span class="o">=</span><span class="n">moe_normalization_mode</span><span class="p">)</span>
|
|
<span class="n">moe_config</span><span class="o">.</span><span class="n">validate</span><span class="p">()</span>
|
|
|
|
<span class="n">dtype</span> <span class="o">=</span> <span class="n">infer_dtype</span><span class="p">(</span><span class="n">dtype</span><span class="p">,</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">hf_config</span><span class="p">,</span> <span class="s1">'torch_dtype'</span><span class="p">,</span> <span class="kc">None</span><span class="p">))</span>
|
|
<span class="n">tie_word_embeddings</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">hf_config</span><span class="p">,</span> <span class="s1">'tie_word_embeddings'</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
|
|
|
|
<span class="k">return</span> <span class="bp">cls</span><span class="p">(</span>
|
|
<span class="n">architecture</span><span class="o">=</span><span class="n">hf_config</span><span class="o">.</span><span class="n">architectures</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
|
|
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
|
|
<span class="n">num_hidden_layers</span><span class="o">=</span><span class="n">hf_config</span><span class="o">.</span><span class="n">num_hidden_layers</span><span class="p">,</span>
|
|
<span class="n">num_attention_heads</span><span class="o">=</span><span class="n">hf_config</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
|
|
<span class="n">hidden_size</span><span class="o">=</span><span class="n">hf_config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
|
|
<span class="n">intermediate_size</span><span class="o">=</span><span class="n">hf_config</span><span class="o">.</span><span class="n">intermediate_size</span><span class="p">,</span>
|
|
<span class="n">num_key_value_heads</span><span class="o">=</span><span class="n">num_key_value_heads</span><span class="p">,</span>
|
|
<span class="n">head_size</span><span class="o">=</span><span class="n">head_size</span><span class="p">,</span>
|
|
<span class="n">vocab_size</span><span class="o">=</span><span class="n">hf_config</span><span class="o">.</span><span class="n">vocab_size</span><span class="p">,</span>
|
|
<span class="n">position_embedding_type</span><span class="o">=</span><span class="s1">'rope_gpt_neox'</span><span class="p">,</span>
|
|
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="n">hf_config</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
|
|
<span class="n">hidden_act</span><span class="o">=</span><span class="n">hidden_act</span><span class="p">,</span>
|
|
<span class="n">norm_epsilon</span><span class="o">=</span><span class="n">norm_epsilon</span><span class="p">,</span>
|
|
<span class="n">attn_bias</span><span class="o">=</span><span class="n">attn_bias</span><span class="p">,</span>
|
|
<span class="n">rotary_base</span><span class="o">=</span><span class="n">rotary_base</span><span class="p">,</span>
|
|
<span class="n">rotary_scaling</span><span class="o">=</span><span class="n">rotary_scaling</span><span class="p">,</span>
|
|
<span class="n">residual_mlp</span><span class="o">=</span><span class="n">residual_mlp</span><span class="p">,</span>
|
|
<span class="n">disable_weight_only_quant_plugin</span><span class="o">=</span><span class="n">disable_weight_only_quant_plugin</span><span class="p">,</span>
|
|
<span class="n">moe</span><span class="o">=</span><span class="n">moe_config</span><span class="p">,</span>
|
|
<span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">,</span>
|
|
<span class="n">quantization</span><span class="o">=</span><span class="n">quant_config</span><span class="p">,</span>
|
|
<span class="n">remove_duplicated_kv_heads</span><span class="o">=</span><span class="n">remove_duplicated_kv_heads</span><span class="p">,</span>
|
|
<span class="n">tie_word_embeddings</span><span class="o">=</span><span class="n">tie_word_embeddings</span><span class="p">,</span>
|
|
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
|
|
|
|
|
|
<div class="viewcode-block" id="LLaMAConfig.from_meta_ckpt">
|
|
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.LLaMAConfig.from_meta_ckpt">[docs]</a>
|
|
<span class="nd">@classmethod</span>
|
|
<span class="k">def</span> <span class="nf">from_meta_ckpt</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span>
|
|
<span class="n">meta_ckpt_dir</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
|
|
<span class="n">dtype</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">'auto'</span><span class="p">,</span>
|
|
<span class="n">mapping</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Mapping</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
|
|
<span class="n">quant_config</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">QuantConfig</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
|
|
<span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
|
|
|
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">Path</span><span class="p">(</span><span class="n">meta_ckpt_dir</span><span class="p">,</span> <span class="s2">"params.json"</span><span class="p">))</span> <span class="k">as</span> <span class="n">fp</span><span class="p">:</span>
|
|
<span class="n">meta_config</span><span class="p">:</span> <span class="nb">dict</span> <span class="o">=</span> <span class="n">json</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">fp</span><span class="p">)</span>
|
|
|
|
<span class="n">n_embd</span> <span class="o">=</span> <span class="n">meta_config</span><span class="p">[</span><span class="s2">"dim"</span><span class="p">]</span>
|
|
<span class="n">n_head</span> <span class="o">=</span> <span class="n">meta_config</span><span class="p">[</span><span class="s2">"n_heads"</span><span class="p">]</span>
|
|
<span class="n">n_kv_head</span> <span class="o">=</span> <span class="n">meta_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"n_kv_heads"</span><span class="p">,</span> <span class="n">n_head</span><span class="p">)</span>
|
|
<span class="n">vocab_size</span> <span class="o">=</span> <span class="n">meta_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"vocab_size"</span><span class="p">,</span> <span class="mi">32000</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Reset vocab_size to 32000 for LLama v2 checkpoint.</span>
|
|
<span class="k">if</span> <span class="n">vocab_size</span> <span class="o">==</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
|
|
<span class="n">vocab_size</span> <span class="o">=</span> <span class="mi">32000</span>
|
|
|
|
<span class="k">if</span> <span class="s2">"hidden_dim"</span> <span class="ow">in</span> <span class="n">meta_config</span><span class="p">:</span>
|
|
<span class="n">inter_size</span> <span class="o">=</span> <span class="n">meta_config</span><span class="p">[</span><span class="s2">"hidden_dim"</span><span class="p">]</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">multiple_of</span> <span class="o">=</span> <span class="n">meta_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"multiple_of"</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
|
|
<span class="n">n_embd_</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="mi">4</span> <span class="o">*</span> <span class="n">n_embd</span> <span class="o">*</span> <span class="mi">2</span> <span class="o">/</span> <span class="mi">3</span><span class="p">)</span>
|
|
<span class="n">ffn_dim_multiplier</span> <span class="o">=</span> <span class="n">meta_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"ffn_dim_multiplier"</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
|
|
<span class="n">inter_size</span> <span class="o">=</span> <span class="n">multiple_of</span> <span class="o">*</span> <span class="p">(</span>
|
|
<span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">n_embd_</span> <span class="o">*</span> <span class="n">ffn_dim_multiplier</span><span class="p">)</span> <span class="o">+</span> <span class="n">multiple_of</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span>
|
|
<span class="n">multiple_of</span><span class="p">)</span>
|
|
|
|
<span class="n">dtype</span> <span class="o">=</span> <span class="n">infer_dtype</span><span class="p">(</span><span class="n">dtype</span><span class="p">,</span> <span class="s1">'bfloat16'</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="n">meta_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'use_scaled_rope'</span><span class="p">):</span>
|
|
<span class="n">rotary_scaling</span> <span class="o">=</span> <span class="p">{</span><span class="s2">"type"</span><span class="p">:</span> <span class="s2">"llama3"</span><span class="p">}</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">rotary_scaling</span> <span class="o">=</span> <span class="n">meta_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"rope_scaling"</span><span class="p">)</span>
|
|
|
|
<span class="c1"># meta checkpoint don't have vocab_size|hidden_act|rotary_base specified, use same default value as HF</span>
|
|
<span class="k">return</span> <span class="bp">cls</span><span class="p">(</span><span class="n">architecture</span><span class="o">=</span><span class="s2">"LlamaForCausalLM"</span><span class="p">,</span>
|
|
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
|
|
<span class="n">num_hidden_layers</span><span class="o">=</span><span class="n">meta_config</span><span class="p">[</span><span class="s2">"n_layers"</span><span class="p">],</span>
|
|
<span class="n">num_attention_heads</span><span class="o">=</span><span class="n">n_head</span><span class="p">,</span>
|
|
<span class="n">hidden_size</span><span class="o">=</span><span class="n">n_embd</span><span class="p">,</span>
|
|
<span class="n">intermediate_size</span><span class="o">=</span><span class="n">inter_size</span><span class="p">,</span>
|
|
<span class="n">num_key_value_heads</span><span class="o">=</span><span class="n">n_kv_head</span><span class="p">,</span>
|
|
<span class="n">vocab_size</span><span class="o">=</span><span class="n">vocab_size</span><span class="p">,</span>
|
|
<span class="n">position_embedding_type</span><span class="o">=</span><span class="s1">'rope_gpt_neox'</span><span class="p">,</span>
|
|
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="mi">2048</span><span class="p">,</span>
|
|
<span class="n">hidden_act</span><span class="o">=</span><span class="s1">'silu'</span><span class="p">,</span>
|
|
<span class="n">rotary_scaling</span><span class="o">=</span><span class="n">rotary_scaling</span><span class="p">,</span>
|
|
<span class="n">rotary_base</span><span class="o">=</span><span class="n">meta_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'rope_theta'</span><span class="p">,</span> <span class="mi">10000</span><span class="p">),</span>
|
|
<span class="n">norm_epsilon</span><span class="o">=</span><span class="n">meta_config</span><span class="p">[</span><span class="s2">"norm_eps"</span><span class="p">],</span>
|
|
<span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">,</span>
|
|
<span class="n">quantization</span><span class="o">=</span><span class="n">quant_config</span><span class="p">,</span>
|
|
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
|
|
</div>
|
|
|
|
</pre></div>
|
|
|
|
</div>
|
|
</div>
|
|
<footer>
|
|
|
|
<hr/>
|
|
|
|
<div role="contentinfo">
|
|
<jinja2.runtime.BlockReference object at 0x7f1ac6f30290>
|
|
|
|
<div class="footer">
|
|
<p>
|
|
Copyright © 2024 NVIDIA Corporation
|
|
</p>
|
|
<p>
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Privacy Policy</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Manage My Privacy</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/preferences/start/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Do Not Sell or Share My Data</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/" target="_blank"
|
|
rel="noopener" data-cms-ai="0">Terms of Service</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Accessibility</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/" target="_blank"
|
|
rel="noopener" data-cms-ai="0">Corporate Policies</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/product-security/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Product Security</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/contact/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Contact</a>
|
|
</p>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
</footer>
|
|
</div>
|
|
</div>
|
|
</section>
|
|
</div>
|
|
<script>
|
|
jQuery(function () {
|
|
SphinxRtdTheme.Navigation.enable(true);
|
|
});
|
|
</script>
|
|
|
|
</body>
|
|
</html> |