TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/iStatefulGptDecoder.h
Robin Kobus 94dd456bd0
refactor: Remove speculative decoding parameters from stateful decoders (#3024)
Simplify StatefulGptDecoderBatched constructor:
  - Remove speculative decoding mode parameter
  - Initialize with default mode=None
  - Update GptSession class accordingly

Simplify setup method signatures in StatefulGptDecoder and StatefulGptDecoderBatched:
  - Remove maxTokensPerStep parameter
  - Initialize decoders with default maxTokensPerStep=1
  - Update GptSession class accordingly

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-03-26 20:16:26 +08:00

136 lines
4.6 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/executor/types.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/generationInput.h"
#include "tensorrt_llm/runtime/generationOutput.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/modelConfig.h"
#include "tensorrt_llm/runtime/samplingConfig.h"
#include "tensorrt_llm/runtime/worldConfig.h"
#include <memory>
#include <utility>
#include <NvInferRuntime.h>
namespace tensorrt_llm::batch_manager
{
class DecoderBuffers;
}
namespace tensorrt_llm::runtime
{
namespace decoder
{
class Input
{
public:
using TensorPtr = ITensor::SharedPtr;
explicit Input(TensorPtr logits)
: logits{std::move(logits)}
{
TLLM_CHECK_WITH_INFO(static_cast<bool>(this->logits), "Invalid logits tensor");
}
// mandatory parameters
TensorPtr logits; // [batchSize, maxBeamWidth, vocabSizePadded], on gpu
// parameters for beam search
TensorPtr cacheIndirection; // [batchSize, maxBeamWidth, maxSeqLen] - the k/v cache index for beam search, on gpu
};
class Output
{
public:
using TensorPtr = std::shared_ptr<ITensor>;
Output() = default;
// parameters for beam search
TensorPtr cacheIndirection; // [batchSize, maxBeamWidth, maxSeqLen], mandatory in beam search, on gpu
TensorPtr sequenceLengths; // [batchSize, maxBeamWidth], mandatory, on gpu
};
} // namespace decoder
//! GPT decoder class with support for in-flight batching
class IStatefulGptDecoder
{
public:
using CudaStreamPtr = std::shared_ptr<CudaStream>;
using TensorPtr = std::shared_ptr<ITensor>;
//! Setup the decoder before calling `forward()`, also calls reshapeBuffers
virtual void setup(executor::DecodingMode const& mode, SizeType32 maxBatchSize, SizeType32 maxBeamWidth,
SizeType32 maxAttentionWindow, SizeType32 sinkTokenLength, SizeType32 maxSequenceLength,
nvinfer1::DataType dtype, ModelConfig const& modelConfig, WorldConfig const& worldConfig)
= 0;
//! @brief Initialize the decoder with new batch of inputs.
virtual void newBatch(GenerationInput const& inputs, GenerationOutput const& outputs,
SamplingConfig const& samplingConfig, ModelConfig const& modelConfig)
= 0;
//! @brief Run one step for all requests without blocking the host thread.
virtual void forwardAsync(decoder::Output& output, decoder::Input const& input) = 0;
//! @brief Wait for the last call to `forwardAsync` to complete.
virtual void forwardSync() = 0;
//! @brief Run one step for all requests.
virtual void forward(decoder::Output& output, decoder::Input const& input)
{
forwardAsync(output, input);
return forwardSync();
}
//! @brief Gather final beam search results for all requests.
virtual void finalize(SamplingConfig const& samplingConfig) const = 0;
//! @returns [batchSize, beamWidth, maxSequenceLength], all token ids, on gpu
[[nodiscard]] virtual TensorPtr getIds() const = 0;
//! @returns [batchSize, beamWidth, maxSequenceLength] token ids after gatherTree
[[nodiscard]] virtual TensorPtr getGatheredIds() const = 0;
//! @returns [batchSize, maxBeamWidth], cumulative log probabilities (per beam), on gpu
[[nodiscard]] virtual TensorPtr getCumLogProbs() const = 0;
//! @returns [batchSize, maxBeamWidth, maxSequenceLength], log probabilities (per beam), on gpu
[[nodiscard]] virtual TensorPtr getLogProbs() const = 0;
//! @brief Get tokens generated in one step of last forward pass
//! @param iter The iteration within [0; maxTokensPerStep) for which to get the tokens
//! @returns [batchSize, beamWidth], tokens generated in `iter` (per beam), on gpu
[[nodiscard]] virtual TensorPtr getNewTokens(SizeType32 iter = 0) const = 0;
//! @returns [1], number of finished sequences, in pinned host memory
[[nodiscard]] virtual TensorPtr getNbFinished() const = 0;
virtual ~IStatefulGptDecoder() = default;
protected:
IStatefulGptDecoder() = default;
};
} // namespace tensorrt_llm::runtime