TensorRT-LLMs/tensorrt_llm/_torch/custom_ops
Dom Brown 44fb3c1673
[TRTLLM-5770] feat: Integrate TRT-LLM Gen FP8 block scale MoE with Pytorch workflow kernel autotuner (#5207)
- Adds a new Python custom op (fp8_block_scale_moe_runner) and a FP8BlockScaleMoERunner class for autotuning.
- Updates C++ MoE and batched GEMM kernels to accept a configIndex for workspace sizing and execution.
- Extends the unit test to run both autotuned and non-autotuned code paths.

Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com>
2025-06-17 21:01:56 +08:00
..
__init__.py [TRTLLM-5770] feat: Integrate TRT-LLM Gen FP8 block scale MoE with Pytorch workflow kernel autotuner (#5207) 2025-06-17 21:01:56 +08:00
cpp_custom_ops.py Feat/ds r1 min latency opt round3, add router gemm, fused a gemm, PDL (#4560) 2025-06-14 17:36:22 +08:00
flashinfer_custom_ops.py Cherry pick feat/llama4 to main (#4739) 2025-05-30 05:28:40 +08:00
torch_custom_ops.py [TRTLLM-5330] perf: Optimize MoE supplementary kernels for large-scale EP (#5215) 2025-06-17 15:23:24 +08:00
trtllm_gen_custom_ops.py [TRTLLM-5770] feat: Integrate TRT-LLM Gen FP8 block scale MoE with Pytorch workflow kernel autotuner (#5207) 2025-06-17 21:01:56 +08:00
userbuffers_custom_ops.py feat: Introduce UB allocator for pytorch flow (#3257) 2025-04-08 18:39:49 +08:00