TensorRT-LLMs/cpp/include/tensorrt_llm/batch_manager/createNewDecoderRequests.h
Robin Kobus 45c7518032
[None][refactor] Simplify decoder state initialization (#6559)
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-08-12 21:44:41 +02:00

128 lines
6.1 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/batch_manager/common.h"
#include "tensorrt_llm/common/algorithm.h"
#include "tensorrt_llm/common/optionalRef.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/modelConfig.h"
#include "tensorrt_llm/runtime/request.h"
#include "tensorrt_llm/runtime/worldConfig.h"
namespace tensorrt_llm::runtime
{
class DecodingInput;
class DecodingOutput;
class GptDecoderBatched;
class SamplingConfig;
class SpeculativeDecodingMode;
namespace decoder
{
class DecoderState;
} // namespace decoder
} // namespace tensorrt_llm::runtime
namespace tensorrt_llm::batch_manager
{
class MedusaBuffers;
class DecoderInputBuffers;
class CreateNewDecoderRequests : Algorithm
{
public:
constexpr static auto name{"CreateNewDecoderRequests"};
using SizeType32 = tensorrt_llm::runtime::SizeType32;
using SamplingConfig = tensorrt_llm::runtime::SamplingConfig;
using CudaStream = tensorrt_llm::runtime::CudaStream;
using TensorPtr = runtime::ITensor::SharedPtr;
using SharedConstPtr = runtime::ITensor::SharedConstPtr;
using DecodingInput = runtime::DecodingInput;
using DecodingOutput = runtime::DecodingOutput;
using SpeculativeDecodingMode = runtime::SpeculativeDecodingMode;
using GptDecoderBatched = runtime::GptDecoderBatched;
template <typename T>
using OptionalRef = tensorrt_llm::common::OptionalRef<T>;
CreateNewDecoderRequests(bool speculativeDecodingFastLogits, bool isLeaderInOrchMode, bool isNormalizeLogProbs)
: mSpeculativeDecodingFastLogits(speculativeDecodingFastLogits)
, mIsLeaderInOrchMode(isLeaderInOrchMode)
, mIsNormalizeLogProbs(isNormalizeLogProbs)
{
}
std::tuple<TensorPtr, std::vector<runtime::SamplingConfig>, std::vector<runtime::ITensor::SharedConstPtr>,
std::vector<executor::LookaheadDecodingConfig>>
operator()(runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig,
executor::DecodingConfig const& decodingConfig, RequestVector const& contextRequests,
nvinfer1::DataType logitsType, DecoderInputBuffers& inputBuffers, runtime::decoder::DecoderState& decoderState,
CudaStream const& runtimeStream, CudaStream const& decoderStream, SizeType32 maxSequenceLength,
SizeType32 beamWidth, OptionalRef<MedusaBuffers const> medusaBuffers) const;
[[nodiscard]] std::tuple<std::vector<runtime::ITensor::SharedConstPtr>,
std::vector<executor::LookaheadDecodingConfig>>
createDecoderRequests(RequestVector const& finishedContextRequests, TensorPtr const& inputIds,
executor::DecodingConfig const& decodingConfig, runtime::decoder::DecoderState& decoderState,
nvinfer1::DataType logitsType, runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig,
runtime::CudaStream const& runtimeStream, runtime::CudaStream const& decoderStream,
SizeType32 maxSequenceLength, OptionalRef<MedusaBuffers const> medusaBuffers) const;
private:
//! @brief Setups decoder internal tensors for new speculative decoding request
static void newRequestSpeculativeDecoding(SizeType32 batchIdx, runtime::decoder_batch::Request const& request,
SamplingConfig const& samplingConfig, runtime::ModelConfig const& modelConfig,
DecodingInput& jointDecodingInput, DecodingOutput& jointDecodingOutput, CudaStream const& runtimeStream,
CudaStream const& decoderStream, SpeculativeDecodingMode const& speculativeDecodingMode,
SizeType32 maxDecodingEngineTokens);
//! @brief Setups decoder internal tensors for new request in Draft model Sps mode
static void newRequestDraftTokensExternal(SizeType32 batchIdx, runtime::decoder_batch::Request const& request,
SamplingConfig const& samplingConfig, DecodingInput& jointDecodingInput, CudaStream const& decoderStream);
//! @brief Setups decoder internal tensors for new Medusa request
static void newRequestMedusa(SizeType32 batchIdx, runtime::decoder_batch::Request const& request,
DecodingInput& jointDecodingInput, CudaStream const& decoderStream, SizeType32 maxDecodingEngineTokens);
//! @brief Setups decoder internal tensors for new Lookahead request
static void newRequestLookahead(SizeType32 batchIdx, runtime::decoder_batch::Request const& request,
DecodingInput& jointDecodingInput, DecodingOutput& jointDecodingOutput, CudaStream const& runtimeStream);
//! @brief Setups decoder internal tensors for new Explicit draft tokens request
static void newRequestExplicitDraftTokens(SizeType32 batchIdx, runtime::decoder_batch::Request const& request,
DecodingOutput& jointDecodingOutput, CudaStream const& runtimeStream);
//! @brief Setups decoder internal tensors for new Eagle request
static void newRequestEagle(SizeType32 batchIdx, runtime::decoder_batch::Request const& request,
runtime::ModelConfig const& modelConfig, DecodingOutput& jointDecodingOutput, CudaStream const& runtimeStream);
[[nodiscard]] std::shared_ptr<runtime::ITensor> retrieveDraftLogits(runtime::ModelConfig const& modelConfig,
runtime::WorldConfig const& worldConfig, std::shared_ptr<runtime::ITensor> const& tensor,
runtime::BufferManager const& bufferManager) const;
bool mSpeculativeDecodingFastLogits;
bool mIsLeaderInOrchMode;
bool mIsNormalizeLogProbs;
};
} // namespace tensorrt_llm::batch_manager