mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
371 lines
14 KiB
Python
371 lines
14 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
from transformers import AutoModel
|
|
|
|
from ..._common import default_net
|
|
from ..._utils import pad_vocab_size
|
|
from ...functional import Tensor, concat, shape
|
|
from ...layers import (MLP, Attention, AttentionMaskType, AttentionParams,
|
|
ColumnLinear, Embedding, KeyValueCacheParams, LayerNorm,
|
|
RmsNorm)
|
|
from ...mapping import Mapping
|
|
from ...module import Module
|
|
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
|
|
QuantConfig, check_share_embedding)
|
|
from .config import GLM_ARCH1_VERSIONS, GLM_ARCH2_VERSIONS, ChatGLMConfig
|
|
from .convert import load_weights_from_hf_model
|
|
|
|
|
|
class ChatGLMDecoderLayer(Module):
|
|
|
|
def __init__(self, config: ChatGLMConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.config = config
|
|
self.chatglm_version = config.chatglm_version
|
|
|
|
hidden_size = config.hidden_size
|
|
dtype = config.dtype
|
|
tp_group = config.mapping.tp_group
|
|
tp_size = config.mapping.tp_size
|
|
tp_rank = config.mapping.tp_rank
|
|
layernorm_epsilon = config.norm_epsilon
|
|
|
|
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
|
self.alpha = (2 * config.num_hidden_layers)**0.5
|
|
norm_cls = RmsNorm if config.rmsnorm else LayerNorm
|
|
|
|
if config.chatglm_version == 'glm':
|
|
attention_mask_type = AttentionMaskType.bidirectionalglm
|
|
elif config.chatglm_version == 'chatglm':
|
|
attention_mask_type = AttentionMaskType.bidirectional
|
|
elif config.chatglm_version in GLM_ARCH2_VERSIONS:
|
|
attention_mask_type = AttentionMaskType.causal
|
|
|
|
self.input_layernorm = norm_cls(
|
|
normalized_shape=hidden_size,
|
|
eps=layernorm_epsilon,
|
|
elementwise_affine=True,
|
|
dtype=dtype,
|
|
)
|
|
|
|
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
|
|
local_layer_idx = layer_idx - layers_range[0]
|
|
self.attention = Attention(
|
|
local_layer_idx=local_layer_idx,
|
|
hidden_size=hidden_size,
|
|
num_attention_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
num_layers=config.num_hidden_layers,
|
|
apply_query_key_layer_scaling=config.apply_query_key_layer_scaling,
|
|
attention_mask_type=attention_mask_type,
|
|
bias=config.add_qkv_bias,
|
|
dense_bias=config.add_bias_linear,
|
|
dtype=config.dtype,
|
|
position_embedding_type=config.position_embedding_type,
|
|
rotary_embedding_base=config.rotary_base,
|
|
rotary_embedding_scaling=config.rotary_scaling,
|
|
rotary_embedding_percentage=config.rotary_pct,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
tp_rank=tp_rank,
|
|
quant_mode=config.quant_mode,
|
|
q_scaling=1.0,
|
|
cross_attention=False,
|
|
relative_attention=False,
|
|
max_distance=0,
|
|
num_buckets=0,
|
|
)
|
|
|
|
mlp_hidden_size = hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
|
|
|
|
self.mlp = MLP(
|
|
hidden_size=hidden_size,
|
|
ffn_hidden_size=mlp_hidden_size,
|
|
hidden_act=config.hidden_act,
|
|
bias=config.add_bias_linear,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=config.quant_mode,
|
|
)
|
|
|
|
self.post_layernorm = norm_cls(
|
|
normalized_shape=hidden_size,
|
|
eps=layernorm_epsilon,
|
|
elementwise_affine=True,
|
|
dtype=dtype,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: Tensor,
|
|
attention_mask: Tensor = None,
|
|
position_ids: Tensor = None, # only used in ChatGLM-6B
|
|
use_cache: bool = False,
|
|
kv_cache_params: KeyValueCacheParams = None,
|
|
attention_params: AttentionParams = None,
|
|
):
|
|
norm_output = self.input_layernorm(hidden_states)
|
|
|
|
attention_output = self.attention(
|
|
hidden_states=norm_output,
|
|
attention_mask=attention_mask,
|
|
use_cache=use_cache,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
encoder_output=None,
|
|
position_embedding=position_ids,
|
|
)
|
|
|
|
if use_cache:
|
|
attention_output, presents = attention_output
|
|
|
|
if self.chatglm_version == 'chatglm':
|
|
residual = norm_output
|
|
|
|
norm_input = residual * self.alpha + attention_output
|
|
|
|
norm_output = self.post_layernorm(norm_input)
|
|
|
|
mlp_output = self.mlp(norm_output)
|
|
|
|
residual = norm_output
|
|
|
|
output = residual * self.alpha + mlp_output
|
|
|
|
else:
|
|
residual = norm_output if self.apply_residual_connection_post_layernorm else hidden_states
|
|
|
|
norm_input = residual + attention_output
|
|
|
|
norm_output = self.post_layernorm(norm_input)
|
|
|
|
mlp_output = self.mlp(norm_output)
|
|
|
|
residual = norm_output if self.apply_residual_connection_post_layernorm else norm_input
|
|
|
|
output = residual + mlp_output
|
|
|
|
if use_cache:
|
|
return (output, presents)
|
|
return output
|
|
|
|
|
|
class ChatGLMModel(Module):
|
|
|
|
def __init__(self, config: ChatGLMConfig):
|
|
super().__init__()
|
|
self.chatglm_version = config.chatglm_version
|
|
norm_cls = RmsNorm if config.rmsnorm else LayerNorm
|
|
|
|
self.vocab_embedding = Embedding(config.vocab_size,
|
|
config.hidden_size,
|
|
dtype=config.dtype)
|
|
|
|
if config.chatglm_version == 'glm':
|
|
self.position_embedding = Embedding(
|
|
config.max_position_embeddings + 1,
|
|
config.hidden_size,
|
|
dtype=config.dtype,
|
|
)
|
|
self.block_embedding = Embedding(
|
|
config.max_position_embeddings + 1,
|
|
config.hidden_size,
|
|
dtype=config.dtype,
|
|
)
|
|
|
|
self.layers = DecoderLayerList(ChatGLMDecoderLayer, config)
|
|
|
|
self.ln_f = norm_cls(
|
|
normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
elementwise_affine=True,
|
|
dtype=config.dtype,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Tensor = None,
|
|
position_ids: Tensor = None, # only used in ChatGLM-6B
|
|
use_cache: bool = False,
|
|
attention_mask: Tensor = None,
|
|
kv_cache_params: KeyValueCacheParams = None,
|
|
attention_params: AttentionParams = None,
|
|
):
|
|
hidden_states = self.vocab_embedding(input_ids)
|
|
|
|
if self.chatglm_version == 'glm':
|
|
if default_net().plugin_config.remove_input_padding:
|
|
position_ids_list = position_ids.split(1, dim=0)
|
|
else:
|
|
position_ids_list = position_ids.split(1, dim=1)
|
|
|
|
position_embedding = self.position_embedding(position_ids_list[0])
|
|
block_embedding = self.block_embedding(position_ids_list[1])
|
|
position_embedding = position_embedding + block_embedding
|
|
|
|
if default_net().plugin_config.remove_input_padding:
|
|
position_embedding = position_embedding.view(
|
|
concat([
|
|
shape(position_embedding, 1),
|
|
shape(position_embedding, 2)
|
|
]))
|
|
else:
|
|
position_embedding = position_embedding.view(
|
|
concat([
|
|
shape(position_embedding, 0),
|
|
shape(position_embedding, 2),
|
|
shape(position_embedding, 3),
|
|
]))
|
|
|
|
hidden_states = hidden_states + position_embedding
|
|
|
|
hidden_states = self.layers(hidden_states,
|
|
use_cache=use_cache,
|
|
attention_mask=attention_mask,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
position_ids=position_ids)
|
|
|
|
if use_cache:
|
|
hidden_states, presents = hidden_states
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
if use_cache:
|
|
return (hidden_states, tuple(presents))
|
|
return hidden_states
|
|
|
|
|
|
class ChatGLMForCausalLM(DecoderModelForCausalLM):
|
|
config_class = ChatGLMConfig
|
|
|
|
def __init__(self, config: ChatGLMConfig):
|
|
transformer = ChatGLMModel(config)
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size,
|
|
config.mapping.tp_size)
|
|
|
|
lm_head = ColumnLinear(config.hidden_size,
|
|
vocab_size_padded,
|
|
bias=False,
|
|
dtype=config.dtype,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
gather_output=True)
|
|
super().__init__(config, transformer, lm_head)
|
|
|
|
@classmethod
|
|
def from_hugging_face(
|
|
cls,
|
|
hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'],
|
|
dtype: str = 'auto',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
**kwargs):
|
|
''' Create a LLaMAForCausalLM object from give parameters
|
|
'''
|
|
load_model_on_cpu = kwargs.pop('load_model_on_cpu', False)
|
|
trust_remote_code = kwargs.pop('trust_remote_code', True)
|
|
|
|
config = ChatGLMConfig.from_hugging_face(hf_model_or_dir,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**kwargs)
|
|
if config.chatglm_version == 'glm':
|
|
device_map = 'cuda' if not load_model_on_cpu else 'cpu'
|
|
else:
|
|
device_map = 'auto' if not load_model_on_cpu else 'cpu'
|
|
hf_model = AutoModel.from_pretrained(
|
|
hf_model_or_dir,
|
|
trust_remote_code=trust_remote_code,
|
|
torch_dtype='auto' if config.chatglm_version != 'glm' else getattr(
|
|
torch, config.dtype),
|
|
device_map=device_map)
|
|
weights = load_weights_from_hf_model(hf_model, config)
|
|
|
|
check_share_embedding(weights, config)
|
|
model = cls(config)
|
|
model.load(weights)
|
|
return model
|
|
|
|
@classmethod
|
|
def quantize(
|
|
cls,
|
|
hf_model_dir: str,
|
|
output_dir: str,
|
|
dtype: str = 'auto',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
*,
|
|
device: str = 'cuda',
|
|
calib_dataset: str = 'cnn_dailymail',
|
|
calib_batches: int = 512,
|
|
calib_batch_size: int = 1,
|
|
calib_max_seq_length: int = 512,
|
|
random_seed: int = 1234,
|
|
tokenizer_max_seq_length: int = 2048,
|
|
**kwargs,
|
|
):
|
|
if quant_config.requires_modelopt_quantization:
|
|
# modelopt quantization flow
|
|
super().quantize(hf_model_dir,
|
|
output_dir,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
device=device,
|
|
calib_dataset=calib_dataset,
|
|
calib_batches=calib_batches,
|
|
calib_batch_size=calib_batch_size,
|
|
calib_max_seq_length=calib_max_seq_length,
|
|
random_seed=random_seed,
|
|
tokenizer_max_seq_length=tokenizer_max_seq_length)
|
|
elif quant_config.requires_calibration:
|
|
# non-modelopt quantization flow
|
|
from . import convert
|
|
|
|
config = ChatGLMConfig.from_hugging_face(hf_model_dir,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**kwargs)
|
|
convert.quantize(hf_model_dir,
|
|
output_dir,
|
|
config=config,
|
|
calib_dataset=calib_dataset,
|
|
device=device)
|
|
else:
|
|
raise ValueError(
|
|
f"The quant_config ({quant_config}) does not require calibration, try {cls.__name__}.from_hugging_face instead."
|
|
)
|
|
|
|
def prepare_inputs(self, *args, **kwargs):
|
|
"""See `PretrainedModel.prepare_inputs` for the detailed parameter list.
|
|
"""
|
|
if self.transformer.chatglm_version in GLM_ARCH1_VERSIONS:
|
|
position_encoding_2d = True
|
|
else:
|
|
position_encoding_2d = False
|
|
return super().prepare_inputs(*args,
|
|
**kwargs,
|
|
position_encoding_2d=position_encoding_2d)
|