TensorRT-LLMs/tensorrt_llm/layers/lora.py
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

182 lines
7.2 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import numpy as np
from .._common import default_net
from ..functional import Tensor, constant, dora_plugin, lora_plugin, where
from ..module import Module
class LoraRuntimeParams(object):
def __init__(
self,
lora_ranks: List[Tensor] = None,
lora_weights_pointers: List[Tensor] = None,
host_request_types: Tensor = None,
host_context_lengths: Tensor = None,
max_encoder_context_length: Tensor = None,
host_encoder_input_lengths: Tensor = None,
weight_index: int = 0,
partial_lora_mask: Tensor = None,
):
self.lora_ranks = lora_ranks
self.lora_weights_pointers = lora_weights_pointers
self.host_request_types = host_request_types
self.host_context_lengths = host_context_lengths
self.max_encoder_context_length = max_encoder_context_length
self.host_encoder_input_lengths = host_encoder_input_lengths
self.weight_index = weight_index
self.partial_lora_mask = partial_lora_mask # Partial LoRA for https://arxiv.org/abs/2401.16420
class Lora(Module):
def __init__(self,
in_hidden_size: int = 0,
out_hidden_sizes: List[int] = [0],
max_low_rank: int = 0) -> None:
super().__init__()
self.in_hidden_size = in_hidden_size
self.out_hidden_sizes = out_hidden_sizes
self.max_low_rank = max_low_rank
def forward(self,
x,
lora_runtime_params: LoraRuntimeParams = None,
is_cross_attention: bool = False):
if default_net().plugin_config.lora_plugin:
result = lora_plugin(
x,
in_hidden_size=self.in_hidden_size,
out_hidden_sizes=self.out_hidden_sizes,
host_request_types=lora_runtime_params.host_request_types,
transb=True,
# For cross attention, host_encoder_input_lengths should be used instead of host_context_lengths
host_context_lengths=lora_runtime_params.host_context_lengths
if not is_cross_attention else
lora_runtime_params.host_encoder_input_lengths,
max_low_rank=self.max_low_rank,
lora_ranks=lora_runtime_params.lora_ranks,
lora_weights_pointers=lora_runtime_params.lora_weights_pointers,
weight_index=lora_runtime_params.weight_index,
)
if lora_runtime_params.partial_lora_mask is not None:
zero_tensor = constant(np.array([0.0], dtype=np.float16))
if isinstance(result, List):
result = [
where(lora_runtime_params.partial_lora_mask, r,
zero_tensor) for r in result
]
elif isinstance(result, Tensor):
result = where(lora_runtime_params.partial_lora_mask,
result, zero_tensor)
else:
assert False
else:
assert False, "Not support lora without plugin"
return result
class Dora(Module):
def __init__(self, out_hidden_sizes: List[int] = [0]) -> None:
super().__init__()
self.out_hidden_sizes = out_hidden_sizes
def forward(self,
x,
lora_runtime_params: LoraRuntimeParams = None,
is_cross_attention: bool = False):
assert lora_runtime_params.weight_index == 0, "DoRA does not support weight_index != 0"
if default_net().plugin_config.lora_plugin and default_net(
).plugin_config.dora_plugin:
result = dora_plugin(
x,
out_hidden_sizes=self.out_hidden_sizes,
host_request_types=lora_runtime_params.host_request_types,
host_context_lengths=lora_runtime_params.host_context_lengths
if not is_cross_attention else
lora_runtime_params.host_encoder_input_lengths,
lora_weights_pointers=lora_runtime_params.lora_weights_pointers,
)
else:
assert False, "Not support dora without plugin"
return result
class LoraParams(object):
def __init__(
self,
lora_ranks=None, # : List[dict[Tensor]]
lora_weights_pointers=None, # : List[dict[Tensor]]
host_context_lengths: Tensor = None,
max_encoder_context_length: Tensor = None, # For cross attention
host_request_types: Tensor = None,
host_encoder_input_lengths: Tensor = None, # For cross attention
weight_index: int = 0,
partial_lora_mask: Tensor = None,
):
self.lora_ranks = lora_ranks
self.lora_weights_pointers = lora_weights_pointers
self.host_context_lengths = host_context_lengths
self.max_encoder_context_length = max_encoder_context_length
self.host_request_types = host_request_types
self.host_encoder_input_lengths = host_encoder_input_lengths
self.weight_index = weight_index
self.partial_lora_mask = partial_lora_mask # Partial LoRA for https://arxiv.org/abs/2401.16420
def get_layer_params(self, layer_idx: int):
return LoraParams(
lora_ranks=[self.lora_ranks[layer_idx]],
lora_weights_pointers=[self.lora_weights_pointers[layer_idx]],
host_context_lengths=self.host_context_lengths,
max_encoder_context_length=self.max_encoder_context_length,
host_request_types=self.host_request_types,
host_encoder_input_lengths=self.host_encoder_input_lengths,
weight_index=self.weight_index,
partial_lora_mask=self.partial_lora_mask)
def get_runtime_params(self, layer_idx: int, lora_module: str):
if f"{lora_module}_lora_ranks" in self.lora_ranks[layer_idx]:
return LoraRuntimeParams(
lora_ranks=[
self.lora_ranks[layer_idx][f"{lora_module}_lora_ranks"]
],
lora_weights_pointers=[
self.lora_weights_pointers[layer_idx]
[f"{lora_module}_lora_weights_pointers"]
],
host_context_lengths=self.host_context_lengths,
max_encoder_context_length=self.max_encoder_context_length,
host_request_types=self.host_request_types,
host_encoder_input_lengths=self.host_encoder_input_lengths,
weight_index=self.weight_index,
partial_lora_mask=self.partial_lora_mask,
)
else:
return None