TensorRT-LLMs/cpp/tensorrt_llm/batch_manager/cacheFormatter.cpp
Balaram Buddharaju a792c23dcf
[TRTLLM-9465][fix] Swap TP-CP grouping order (#10350)
Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>
2026-01-05 20:08:03 +08:00

988 lines
47 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cacheFormatter.h"
#include "mlaCacheFormatter.h"
#include "tensorrt_llm/batch_manager/contextProgress.h"
#include "tensorrt_llm/batch_manager/dataTransceiver.h"
#include "tensorrt_llm/batch_manager/kvCacheEventManager.h"
#include "tensorrt_llm/batch_manager/kvCacheUtils.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/dataType.h"
#include "tensorrt_llm/common/envUtils.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/nvtxUtils.h"
#include "tensorrt_llm/executor/cache_transmission/agent_utils/connection.h"
#include "tensorrt_llm/executor/cache_transmission/cacheSplitConcat.h"
#include "tensorrt_llm/executor/executor.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <future>
#include <numeric>
namespace tensorrt_llm::batch_manager::kv_cache_manager
{
BlockRange getBlockRangeForSending(BaseKVCacheManager* cacheManager, LlmRequest const& llmRequest,
BlockKey const& lastBlockKey, int32_t indexFromEnd, bool recvSideHasCP)
{
auto poolNum = cacheManager->getBlockManager().getNumPools(
/*includeBlockScalePools=*/false, /*includeIndexerKCachePools=*/false);
// Note: When recv side has CP, the requested seqLen is lesser than seqLen on the sender side as seqLen is
// distributed among CP ranks. So, we transfer all blocks from send side.
if (poolNum > 1 || !cacheManager->isEnableBlockReuse() || lastBlockKey.uniqueTokens.size() == 0 || recvSideHasCP)
{
// disable reuse path, and vwsa don't support reuse.
bool needSendAllForWindow = common::getEnvKVCacheTransferAllBlocksForWindow();
auto blockRange = BlockRange::fromAllBlockIds(*cacheManager, llmRequest.mRequestId);
auto const& windowsMetadata = cacheManager->getBlockManager().getWindowSizesMetadata();
if (windowsMetadata.size() == 1 || needSendAllForWindow || recvSideHasCP)
{
return blockRange;
}
auto const& blockIdsPerWindow = blockRange.getBlockIdsPerWindow();
for (auto const& [windowSize, metadata] : windowsMetadata)
{
auto windowStartBlockIdx = needSendAllForWindow
? 0
: static_cast<SizeType32>(blockIdsPerWindow.at(windowSize).size())
- (windowSize / cacheManager->getBlockManager().getTokensPerBlock() + 1);
// TODO: promptLen to get the startBlockIdx
SizeType32 startBlockIdx = std::max(0, windowStartBlockIdx);
TLLM_LOG_DEBUG("getBlockRangeForSending windowSize: %d, startBlockIdx: %d windowStartBlockIdx: %d",
windowSize, startBlockIdx, windowStartBlockIdx);
blockRange.setBlockIdsForWindow(windowSize,
std::vector<SizeType32>(
blockIdsPerWindow.at(windowSize).begin() + startBlockIdx, blockIdsPerWindow.at(windowSize).end()));
}
return blockRange;
}
TLLM_CHECK_WITH_INFO(lastBlockKey.uniqueTokens.size() > 0, "lastBlockKey must be non-empty when reuse is enabled");
return BlockRange::fromReuseTree(*cacheManager, lastBlockKey, indexFromEnd);
}
BlockRange getBlockRangeForReceiving(
BaseKVCacheManager* cacheManager, LlmRequest const& llmRequest, bool srcEnableBlockReuse, bool recvSideHasCP)
{
// Note: When recv side has CP, we request all blocks from send side right now.
auto poolNum = cacheManager->getBlockManager().getNumPools(
/*includeBlockScalePools=*/false, /*includeIndexerKCachePools=*/false);
if (poolNum == 1 && srcEnableBlockReuse && !recvSideHasCP)
{
// Build from all block ids, then slice off the reused blocks so we only transfer newly allocated ones.
auto windowSize = cacheManager->getBlockManager().getWindowSizesMetadata().begin()->first;
auto range = BlockRange::fromAllBlockIds(*cacheManager, llmRequest.mRequestId);
auto const& allBlockIds = range.getBlockIdsPerWindow().at(windowSize);
auto const totalBlocks = static_cast<SizeType32>(allBlockIds.size());
// Derive reused blocks count from number of unique prepopulated tokens
auto const tokensPerBlock = cacheManager->getBlockManager().getTokensPerBlock();
auto const prepopulatedTokens = llmRequest.getPrepopulatedPromptLen();
auto const totalUniqueTokens = llmRequest.getPromptLen();
auto const usedBlocks = std::min<SizeType32>(
static_cast<SizeType32>((totalUniqueTokens + tokensPerBlock - 1) / tokensPerBlock), totalBlocks);
auto const reusedBlocks
= std::min<SizeType32>(static_cast<SizeType32>((prepopulatedTokens / tokensPerBlock)), usedBlocks);
std::vector<SizeType32> newBlockIds;
if (reusedBlocks < usedBlocks)
{
newBlockIds.assign(allBlockIds.begin() + reusedBlocks, allBlockIds.begin() + usedBlocks);
}
else
{
if (usedBlocks > 0 && usedBlocks <= totalBlocks)
{
newBlockIds.push_back(allBlockIds[usedBlocks - 1]);
}
}
range.setBlockIdsForWindow(windowSize, std::move(newBlockIds));
return range;
}
auto const& windowsMetadata = cacheManager->getBlockManager().getWindowSizesMetadata();
if (windowsMetadata.size() == 1 || common::getEnvKVCacheTransferAllBlocksForWindow() || recvSideHasCP)
{
return BlockRange::fromAllBlockIds(*cacheManager, llmRequest.mRequestId);
}
auto blockRange = BlockRange::fromAllBlockIds(*cacheManager, llmRequest.mRequestId);
for (auto const& [windowSize, metadata] : windowsMetadata)
{
auto const& blockIdsPerWindow = blockRange.getBlockIdsPerWindow();
auto windowStartBlockIdx = static_cast<SizeType32>(blockIdsPerWindow.at(windowSize).size())
- (windowSize / cacheManager->getBlockManager().getTokensPerBlock() + 1);
SizeType32 startBlockIdx = std::max(0, windowStartBlockIdx);
blockRange.setBlockIdsForWindow(windowSize,
std::vector<SizeType32>(
blockIdsPerWindow.at(windowSize).begin() + startBlockIdx, blockIdsPerWindow.at(windowSize).end()));
}
return blockRange;
}
bool CacheFormatter::needSendCache(
CacheState const& selfConfig, CacheState const& destConfig, runtime::SizeType32 selfIdx)
{
auto targetInfo = executor::kv_cache::targetIRanks(destConfig, selfConfig, selfIdx);
if (targetInfo.mDupHeadFactor <= 1)
{
return true;
}
int selfCpSize = selfConfig.getParallelConfig().mContextParallelism;
int selfTpRank = (selfIdx % (selfConfig.getParallelConfig().mTensorParallelism * selfCpSize)) / selfCpSize;
int selfTpRankInDpGroup = selfTpRank;
if (selfConfig.getParallelConfig().mEnableAttentionDP)
{
int selfTPNumInDPGroup
= selfConfig.getParallelConfig().mTensorParallelism / selfConfig.getParallelConfig().mDPsize;
selfTpRankInDpGroup = selfTpRank % selfTPNumInDPGroup;
}
int destDPRank = destConfig.getParallelConfig().mEnableAttentionDP ? destConfig.getParallelConfig().mDPrank : 0;
return (destDPRank % targetInfo.mDupHeadFactor) == (selfTpRankInDpGroup % targetInfo.mDupHeadFactor);
}
void checkAlternateWindow(BaseKVCacheManager* cacheManager, BaseCacheFormatter::CacheState const& selfConfig,
BaseCacheFormatter::CacheState const& destConfig)
{
// TODO: VSWA do not support uneven layer per PP.
// if gen PP and context PP are different, cache formatter only support alternative window like gpt-oss.
// which is one layer is WSA, and another layer is Full attention.
auto numPools = cacheManager->getBlockManager().getNumPools(
/*includeBlockScalePools=*/false, /*includeIndexerKCachePools=*/false);
auto layerNum = cacheManager->getBlockManager().getNumLayers();
auto selfPPNum = selfConfig.getParallelConfig().mPipelineParallelism;
auto selfAllLayerNum = selfConfig.getModelConfig().mNbKvHeadsPerLayer.size();
auto destPPNum = destConfig.getParallelConfig().mPipelineParallelism;
auto destAllLayerNum = destConfig.getModelConfig().mNbKvHeadsPerLayer.size();
TLLM_CHECK_WITH_INFO(selfAllLayerNum % selfPPNum == 0, " For VWSA selfAllLayerNum must be divisible by selfPPNum");
TLLM_CHECK_WITH_INFO(destAllLayerNum % destPPNum == 0, "For VWSA destAllLayerNum must be divisible by destPPNum");
std::vector<SizeType32> poolIdxs(numPools);
TLLM_CHECK(layerNum >= numPools);
for (int i = 0; i < numPools; i++)
{
poolIdxs[i] = cacheManager->getBlockManager().getLayerPoolIdx(i);
TLLM_LOG_DEBUG("poolIdxs[%d] = %d layerNum:%d", i, poolIdxs[i], layerNum);
}
std::unordered_set<SizeType32> uniquePoolIdxs(poolIdxs.begin(), poolIdxs.end());
TLLM_CHECK_WITH_INFO(uniquePoolIdxs.size() == poolIdxs.size(), "poolIdxs must contain unique elements");
for (int i = numPools; i < layerNum; i++)
{
TLLM_CHECK_WITH_INFO(poolIdxs[i % numPools] == cacheManager->getBlockManager().getLayerPoolIdx(i),
"only support Alternate Window");
}
}
std::vector<size_t> CacheFormatter::pickRecvConnections(
size_t numConnections, CacheState const& selfConfig, SizeType32 selfIdx, CacheState const& destConfig) const
{
auto targetInfo = executor::kv_cache::targetIRanks(destConfig, selfConfig, selfIdx);
if (targetInfo.mPeerDupHeadFactor <= 1)
{
std::vector<size_t> ret(numConnections);
std::iota(ret.begin(), ret.end(), 0);
return ret;
}
TLLM_CHECK(numConnections == targetInfo.mIRanks.size());
int selfDPRank = selfConfig.getParallelConfig().mEnableAttentionDP ? selfConfig.getParallelConfig().mDPrank : 0;
std::vector<size_t> ret;
for (int i = 0; i < targetInfo.mDomainTPSize; i++)
{
if ((i % targetInfo.mPeerDupHeadFactor) == (selfDPRank % targetInfo.mPeerDupHeadFactor))
{
for (int j = 0; j < targetInfo.mDomainPPSize; j++)
{
ret.push_back((i * targetInfo.mDomainPPSize) + j);
}
}
}
return ret;
}
void CacheFormatter::format(tensorrt_llm::batch_manager::TransferSession& session)
{
NVTX3_SCOPED_RANGE(CacheFormatter_format);
session.setTime(TransferSession::kTimeFormatter);
auto const& llmRequest = session.getLlmRequest();
TLLM_LOG_DEBUG(
mpi::MpiComm::world().getRank(), "Start sending KV cache for request ID: %ld.", llmRequest.mRequestId);
TLLM_CHECK_WITH_INFO(llmRequest.mSamplingConfig.beamWidth == 1, "Currently, only beam width 1 is supported.");
auto const& connections = session.getConnections();
auto const& selfConfig = session.getSelfState().getCacheState().value();
auto const& destConfig = session.getOtherState().getCacheState().value();
auto const selfIdx = session.getSelfState().getCommState().value().getSelfIdx();
auto indexFromEnd = session.getIndexFromEnd();
auto& bufferManager = session.getBufferManager();
// Some TP rank don't need to send cache since duplicate header is not needed.
if (!needSendCache(selfConfig, destConfig, selfIdx))
{
return;
}
auto& blockManager = mCacheManager->getBlockManager();
auto const& lastBlockKey = session.getLastBlockKey();
auto blockRange = getBlockRangeForSending(mCacheManager, llmRequest, lastBlockKey, indexFromEnd);
auto const numPools
= blockManager.getNumPools(/*includeBlockScalePools=*/false, /*includeIndexerKCachePools=*/false);
// TODO(oargov): are we sure the other side has the same number of pools? this might not hold for pp_size>1...
bool layerWise = common::getEnvDisaggLayerwise() && numPools == 1;
if (layerWise)
{
auto& progress = llmRequest.getContextProgress();
SizeType32 const numLayers = blockManager.getNumLayers();
runtime::ITensor::Shape offset = runtime::ITensor::makeShape({0, 0});
for (SizeType32 layerIdx = 0; layerIdx < numLayers; layerIdx++)
{
auto const poolIdx = blockManager.getLayerPoolIdx(layerIdx);
auto const layerIdxInPool = blockManager.getPoolLayerIdx(layerIdx);
offset.d[1] = layerIdxInPool;
if (progress != nullptr)
{
progress->wait(layerIdx);
}
auto const& windowSizes = blockRange.getWindowSizes();
for (auto const& windowSize : windowSizes)
{
auto blockRangeForWindow = blockRange.getBlockRangeForWindow(windowSize);
for (auto it = blockRangeForWindow.begin(); it != blockRangeForWindow.end(); ++it)
{
// Block dim: [1, numLayersInPool, ...], offset = {0, layerIndexInPool}
auto layer = runtime::ITensor::slice(it, offset, 1);
if (offset.d[1] == 0)
{
TLLM_LOG_DEBUG("Block %p of pool %d shape = %s", it->data(), poolIdx,
runtime::ITensor::toString(it->getShape()).c_str());
}
for (size_t i = 0; i < connections.size(); i++)
{
TLLM_LOG_DEBUG("Send layer %d(%d-%d)", layerIdx, poolIdx, layerIdxInPool);
session.send(i, layer->data(), layer->getSizeInBytes());
}
}
}
}
}
else
{
int blockNum = 0;
size_t allCacheBlockSize = 0;
auto const& windowSizes = blockRange.getWindowSizes();
TLLM_LOG_DEBUG(
mpi::MpiComm::world().getRank(), " blockRange.getWindowSizes(); windowSizes size: %d", windowSizes.size());
TLLM_CHECK_WITH_INFO(
static_cast<int>(windowSizes.size()) == numPools, "window sizes should be the same as numPools");
std::map<SizeType32, std::vector<runtime::ITensor::SharedPtr>> inputKvCacheBlocksPerWindow;
for (auto const& windowSize : windowSizes)
{
auto blockRangeForWindow = blockRange.getBlockRangeForWindow(windowSize);
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), " format windowSize: %d blockRangeForWindow size: %d",
windowSize, blockRangeForWindow.size());
inputKvCacheBlocksPerWindow.emplace(windowSize, std::vector<runtime::ITensor::SharedPtr>());
for (auto it = blockRangeForWindow.begin(); it != blockRangeForWindow.end(); ++it)
{
inputKvCacheBlocksPerWindow.at(windowSize).push_back(it);
allCacheBlockSize += it->getSize();
blockNum++;
}
}
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), "inputKvCacheBlocks size: %ld,blockNum: %d , windowSizes: %ld",
inputKvCacheBlocksPerWindow.size(), blockNum, windowSizes.size());
if (inputKvCacheBlocksPerWindow.size() > 1)
{
if (selfConfig.getParallelConfig().mPipelineParallelism
!= destConfig.getParallelConfig().mPipelineParallelism)
{
checkAlternateWindow(mCacheManager, selfConfig, destConfig);
}
}
TLLM_CHECK(!inputKvCacheBlocksPerWindow.empty());
TLLM_CHECK(blockNum > 0);
int deviceId = mCacheManager->getBlockManager().getStreamDevice();
auto targetInfo = executor::kv_cache::targetIRanks(destConfig, selfConfig, selfIdx);
if (common::getEnvTryZCopyForKVCacheTransfer()
&& (destConfig.getParallelConfig().mPipelineParallelism
== selfConfig.getParallelConfig().mPipelineParallelism)
&& (destConfig.getParallelConfig().mTensorParallelism == selfConfig.getParallelConfig().mTensorParallelism))
{
TLLM_LOG_DEBUG("Try using zero-copy for the KV cache.");
NVTX3_SCOPED_RANGE(sendBufferFun);
TLLM_CHECK(connections.size() == 1);
TLLM_CUDA_CHECK(cudaSetDevice(deviceId));
for (size_t i = 0; i < connections.size(); i++)
{
for (auto const& [window, blocks] : inputKvCacheBlocksPerWindow)
{
for (auto const& block : blocks)
{
session.send(i, block->data(), block->getSizeInBytes());
}
}
}
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), "End the sending of KV cache for the request ID: %ld.",
llmRequest.mRequestId);
return;
}
// formatter flow
// 1. collect cache blocks of the request.
// 2. compute the buffer size for each target.
// 3. prepare the pre-allocated buffer for each target according to the buffer size.
// 4. call splitKVCacheDispatch to split the cache blocks according to the different parallelis and gather the
// cache blocks to the corresponding buffer.
// 5. send the buffer to the corresponding target. Ideally, we send only once (one buffer) for each target.
auto cacheBufferId = mCacheTransBufferManager->assignBufferIndexForSend();
int peerDuplicateHeadFactor = targetInfo.mPeerDupHeadFactor;
auto targetNum = connections.size();
auto bufferTargetNum = targetNum / peerDuplicateHeadFactor;
auto ppRank = selfIdx
/ (selfConfig.getParallelConfig().mTensorParallelism * selfConfig.getParallelConfig().mContextParallelism);
int selfAttentionLayerNum = selfConfig.getParallelConfig().mAttentionLayerNumPerPP.at(ppRank);
auto getBufferSizeForTarget = [&]()
{
std::vector<size_t> bufferSizeForTarget(targetNum, 0);
// only first bufferTargetNum is used.
if (inputKvCacheBlocksPerWindow.size() > 1)
{
// for VWSA
for (size_t i = 0; i < targetNum; i++)
{
bufferSizeForTarget[i] = allCacheBlockSize * peerDuplicateHeadFactor / targetNum;
}
return bufferSizeForTarget;
}
for (size_t i = 0; i < targetNum; i++)
{
bufferSizeForTarget[i] = allCacheBlockSize * peerDuplicateHeadFactor / targetInfo.mDomainTPSize
/ selfAttentionLayerNum * targetInfo.getPeerPPDomainLayerNum(i);
}
return bufferSizeForTarget;
};
auto bufferEleSizes = getBufferSizeForTarget();
auto result = mCacheTransBufferManager->getOrAllocateSendBuffers(
cacheBufferId, static_cast<int>(bufferTargetNum), bufferEleSizes, bufferManager);
auto& outputSplitCaches = std::get<0>(result);
auto& bufferCoverTargetNum = std::get<1>(result);
auto& onlyUseDynamicBuffer = std::get<2>(result);
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(),
" format bufferTargetNum: %d, targetNum: %d, peerDuplicateHeadFactor: %d duplicate:%d "
"bufferCoverTargetNum:%d connections.size():%ld",
bufferTargetNum, targetNum, peerDuplicateHeadFactor, targetInfo.mDupHeadFactor, bufferCoverTargetNum,
connections.size());
auto* agentConnnecion = dynamic_cast<executor::kv_cache::AgentConnection const*>(connections[0]);
if (agentConnnecion != nullptr)
{
TLLM_CHECK_WITH_INFO(bufferCoverTargetNum == bufferTargetNum, "Agent need all buffer pre-allocated");
TLLM_CHECK(onlyUseDynamicBuffer == false);
}
// TODO: add parameters for layerNumForEachOutput
tensorrt_llm::executor::kv_cache::splitKVCacheDispatch(
inputKvCacheBlocksPerWindow, outputSplitCaches, destConfig, selfConfig, selfIdx, bufferManager);
bufferManager.getStream().synchronize();
session.setTime(TransferSession::kTimePreprocess);
auto preAllocSendBuffer = mCacheTransBufferManager->getSendBuffer(cacheBufferId);
if (preAllocSendBuffer != nullptr)
{
TLLM_CHECK(preAllocSendBuffer->getDataType()
== inputKvCacheBlocksPerWindow.begin()->second.front()->getDataType());
}
auto sendBufferFun = [&](int deviceId, size_t processIdx)
{
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), " send processIdx: %ld", processIdx);
NVTX3_SCOPED_RANGE(sendBufferFun);
TLLM_CUDA_CHECK(cudaSetDevice(deviceId));
TLLM_CHECK(connections.size() > (processIdx / peerDuplicateHeadFactor));
TLLM_CHECK(outputSplitCaches.size() > (processIdx / peerDuplicateHeadFactor));
auto startTime = LlmRequest::getSteadyClockNow();
size_t ppDomainSize = targetInfo.mDomainPPSize;
size_t bufferTpRank = (processIdx / ppDomainSize) / peerDuplicateHeadFactor;
size_t bufferIdx = (bufferTpRank * ppDomainSize) + (processIdx % ppDomainSize);
size_t size = outputSplitCaches[bufferIdx]->getSizeInBytes();
if (bufferIdx < bufferCoverTargetNum)
{
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), " send processIdx: %d bufferIdx: %d size:%ld",
processIdx, bufferIdx, outputSplitCaches[bufferIdx]->getSizeInBytes());
session.send(
processIdx, outputSplitCaches[bufferIdx]->data(), outputSplitCaches[bufferIdx]->getSizeInBytes());
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), " end send processIdx: %d bufferIdx: %d size:%ld",
processIdx, bufferIdx, outputSplitCaches[bufferIdx]->getSizeInBytes());
}
else
{
// If cacheIdx< bufferCoverTargetNum, the ouputSplitCaches.at(cacheIdx) is allocated by cudaMallocAsync,
// which is unable to be transferred by UCX GPU-direct RDMA. We need copy the data to pre-allocated
// cudaMalloc buffer,and then start send.
// bufferCoverTargetNum == 0, mSendBuffer size < one outputSlice
// send multiple times
size_t remainSendSize = outputSplitCaches[processIdx]->getSize();
size_t needSendSize = outputSplitCaches[processIdx]->getSize();
auto sendBufferIdx = bufferCoverTargetNum == 0 ? 0 : bufferIdx % bufferCoverTargetNum;
auto sendUseAllocBuffer
= bufferCoverTargetNum == 0 ? preAllocSendBuffer : outputSplitCaches[sendBufferIdx];
while (remainSendSize > 0)
{
TLLM_CHECK(sendUseAllocBuffer != nullptr);
auto sendBufferEleSize = sendUseAllocBuffer->getSize();
auto sendSize = std::min(remainSendSize, sendBufferEleSize);
auto copySlice = runtime::ITensor::slice(
outputSplitCaches[bufferIdx], needSendSize - remainSendSize, sendSize);
auto copyTargetSlice = runtime::ITensor::slice(sendUseAllocBuffer, 0, sendSize);
bufferManager.copy(*copySlice, *copyTargetSlice);
bufferManager.getStream().synchronize();
session.send(processIdx, copyTargetSlice->data(), copyTargetSlice->getSizeInBytes());
remainSendSize -= sendSize;
}
}
auto endTime = LlmRequest::getSteadyClockNow();
session.appendMeasure(startTime, endTime, size);
};
if (connections.size() > 1)
{
if (!common::getEnvEnableReceiveKVCacheParallel())
{
TLLM_LOG_DEBUG("Disable parallel receiving of the KV cache.");
for (size_t i = 0; i < connections.size(); i++)
{
sendBufferFun(deviceId, i);
}
}
else
{
// concurrency num should <=bufferCoverTargetNum to avoid data-race.
auto concurrencyNum
= std::min(std::max(static_cast<size_t>(1), bufferCoverTargetNum), connections.size());
auto remainSendNum = connections.size();
while (remainSendNum > 0)
{
auto sendConcurrencyNum = std::min(remainSendNum, concurrencyNum);
std::vector<std::future<void>> futures;
futures.reserve(sendConcurrencyNum);
for (size_t i = 0; i < sendConcurrencyNum; i++)
{
TLLM_CHECK((i + (connections.size() - remainSendNum)) < connections.size());
futures.push_back(std::async(
std::launch::async, sendBufferFun, deviceId, i + (connections.size() - remainSendNum)));
}
for (auto& future : futures)
{
future.get();
}
remainSendNum -= sendConcurrencyNum;
}
}
}
else
{
sendBufferFun(deviceId, 0);
}
session.setTime(TransferSession::kTimeTransmissions);
mCacheTransBufferManager->freeBufferIndexForSend(cacheBufferId);
session.setTime(TransferSession::kTimePostprocess);
}
TLLM_LOG_DEBUG(
mpi::MpiComm::world().getRank(), "End the sending of KV cache for the request ID:%ld ", llmRequest.mRequestId);
}
void CacheFormatter::unformat(tensorrt_llm::batch_manager::TransferSession& session)
{
NVTX3_SCOPED_RANGE(CacheFormatter_unformat);
session.setTime(TransferSession::kTimeFormatter);
auto const& llmRequest = session.getLlmRequest();
auto const ctxReqId = llmRequest.getContextPhaseParams().value().getReqId();
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(),
"Start receiving KV cache for request ID: %ld, context request ID: %ld.", llmRequest.mRequestId, ctxReqId);
auto const& connections = session.getConnections();
auto const& selfConfig = session.getSelfState().getCacheState().value();
auto const& destConfig = session.getOtherState().getCacheState().value();
auto const selfIdx = session.getSelfState().getCommState().value().getSelfIdx();
auto& bufferManager = session.getBufferManager();
auto blockRange = getBlockRangeForReceiving(mCacheManager, llmRequest, destConfig.getEnableBlockReuse());
auto pickUpConnections = pickRecvConnections(connections.size(), selfConfig, selfIdx, destConfig);
TLLM_LOG_DEBUG("pickUpConnections size: %d connections size: %d", pickUpConnections.size(), connections.size());
std::vector<runtime::ITensor::SharedPtr> recvBufferTmps;
std::map<SizeType32, std::vector<runtime::ITensor::SharedPtr>> outputBuffersPerWindow;
auto const numPools = mCacheManager->getBlockManager().getNumPools(
/*includeBlockScalePools=*/false, /*includeIndexerKCachePools=*/false);
// TODO(oargov): are we sure the other side has the same number of pools? this might not hold for pp_size>1...
size_t blockNum = 0;
size_t cacheBlockSizeSum = 0;
auto windowSizes = blockRange.getWindowSizes();
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), " unformat windowSizes size: %d", windowSizes.size());
for (auto const& windowSize : windowSizes)
{
auto blockRangeForWindow = blockRange.getBlockRangeForWindow(windowSize);
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), " unformat windowSize: %d blockRangeForWindow size: %d",
windowSize, blockRangeForWindow.size());
outputBuffersPerWindow.emplace(windowSize, std::vector<runtime::ITensor::SharedPtr>());
for (auto it = blockRangeForWindow.begin(); it != blockRangeForWindow.end(); ++it)
{
outputBuffersPerWindow.at(windowSize).push_back(it);
cacheBlockSizeSum += it->getSize();
blockNum++;
}
}
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), "outputBuffersPerWindow size: %ld,blockNum: %d , windowSizes: %ld",
outputBuffersPerWindow.size(), blockNum, windowSizes.size());
TLLM_CHECK(!outputBuffersPerWindow.empty());
if (outputBuffersPerWindow.size() > 1)
{
// We only support limited case for VSWA.
if (selfConfig.getParallelConfig().mPipelineParallelism != destConfig.getParallelConfig().mPipelineParallelism)
{
checkAlternateWindow(mCacheManager, selfConfig, destConfig);
}
}
{
NVTX3_SCOPED_RANGE(formatInputRecvBuffer);
auto dataType = mCacheManager->getPrimaryPool(0)->getDataType();
bool layerWise = common::getEnvDisaggLayerwise() && numPools == 1;
if (layerWise)
{
// [numLayersInPool, ...]
auto cacheShape = executor::kv_cache::makeShapeFromCacheState(destConfig);
auto cacheVolume = runtime::ITensor::volume(cacheShape);
size_t bufferNum = blockNum * pickUpConnections.size();
runtime::ITensor::SharedPtr recvBufferTemp;
{
NVTX3_SCOPED_RANGE(formatInputAllocBuffer);
recvBufferTemp = bufferManager.gpu(
runtime::ITensor::makeShape({static_cast<int64_t>(cacheVolume * bufferNum)}), dataType);
recvBufferTmps.resize(bufferNum);
for (size_t i = 0; i < bufferNum; i++)
{
recvBufferTmps[i] = runtime::ITensor::slice(recvBufferTemp, i * cacheVolume, cacheVolume);
}
// sync to alloc buffer
bufferManager.getStream().synchronize();
}
SizeType32 const numLocalLayers = mCacheManager->getBlockManager().getNumLayers();
SizeType32 const numLayers = cacheShape.d[0];
TLLM_CHECK(numLayers % numLocalLayers == 0 || numLocalLayers % numLayers == 0);
auto layerVolume = cacheVolume / cacheShape.d[0];
for (SizeType32 layerIdx = 0; layerIdx < numLayers; layerIdx++)
{
// TODO: only send/recv required layers for ctxPP < genPP (numLayers > numLocalLayers)
auto const poolIdx = 0;
auto const layerIdxInPool = layerIdx;
int idx = 0;
// blockRange.updatePoolIdx(poolIdx);
auto const window = mCacheManager->getBlockManager().getPoolLayerIdx(layerIdx);
auto blockRangeForWindow = blockRange.getBlockRangeForWindow(window);
for (auto it = blockRangeForWindow.begin(); it != blockRangeForWindow.end(); ++it)
{
if (layerIdxInPool == 0)
{
TLLM_LOG_DEBUG("Buffer %d of pool %d shape = %s", idx, poolIdx,
runtime::ITensor::toString(recvBufferTmps[idx]->getShape()).c_str());
}
for (size_t i = 0; i < pickUpConnections.size(); i++)
{
TLLM_LOG_DEBUG("Receive layer %d(%d-%d)", layerIdx, poolIdx, layerIdxInPool);
// Buffer dim: [numLayersInPool * layerVolume]
auto layer
= runtime::ITensor::slice(recvBufferTmps[idx], layerIdxInPool * layerVolume, layerVolume);
llmRequest.updateKvCacheSize((*layer).getSizeInBytes());
session.recv(pickUpConnections[i], layer->data(), layer->getSizeInBytes());
idx++;
}
}
}
{
NVTX3_SCOPED_RANGE(formatInputConcatenate);
executor::kv_cache::concatKVCacheDispatch(recvBufferTmps.data(), recvBufferTmps.size(),
getCounterparts(selfConfig, selfIdx, destConfig), destConfig,
outputBuffersPerWindow.begin()->second.data(), outputBuffersPerWindow.begin()->second.size(),
selfIdx, selfConfig, bufferManager);
bufferManager.getStream().synchronize();
}
}
else
{
// non-layer-wise
int deviceId = bufferManager.getStream().getDevice();
if (common::getEnvTryZCopyForKVCacheTransfer() && destConfig == selfConfig)
{
TLLM_LOG_DEBUG("try zcopy for KV cache");
NVTX3_SCOPED_RANGE(recvBufferFun);
TLLM_CHECK(pickUpConnections.size() == 1);
TLLM_CUDA_CHECK(cudaSetDevice(deviceId));
for (size_t i = 0; i < pickUpConnections.size(); i++)
{
for (auto const& [window, blocks] : outputBuffersPerWindow)
{
for (auto const& block : blocks)
{
llmRequest.updateKvCacheSize((*block).getSizeInBytes());
session.recv(pickUpConnections[i], block->data(), block->getSizeInBytes());
}
}
}
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(),
"End receiving KV cache for request ID: %ld, context request ID: %ld.", llmRequest.mRequestId,
ctxReqId);
return;
}
// unformatted flow
// 1. collect cache blocks of the request.
// 2. compute the buffer size for each target.
// 3. prepare the pre-allocated buffer for each target according to the buffer size.
// 4. receive the buffer from the corresponding target. Ideally, we receive only once (one buffer) for each
// target.
// 5. call concatKvCacheV2Dispatch to concatenate the cache blocks according to the different parallelis
runtime::ITensor::SharedPtr recvBufferTemp;
std::vector<runtime::ITensor::SharedPtr> recvSplitCaches;
auto dataType = outputBuffersPerWindow.begin()->second.front()->getDataType();
auto targetNum = pickUpConnections.size();
TLLM_CHECK(cacheBlockSizeSum % targetNum == 0);
auto targetInfo = executor::kv_cache::targetIRanks(destConfig, selfConfig, selfIdx);
auto ppRank = selfIdx
/ (selfConfig.getParallelConfig().mTensorParallelism
* selfConfig.getParallelConfig().mContextParallelism);
int selfAttentionLayerNum = selfConfig.getParallelConfig().mAttentionLayerNumPerPP.at(ppRank);
auto getTargetBufferEleSize = [&]()
{
if (outputBuffersPerWindow.size() > 1)
{
std::vector<size_t> bufferSizeForTarget(targetNum, 0);
for (size_t i = 0; i < targetNum; i++)
{
bufferSizeForTarget[i] = cacheBlockSizeSum / targetNum;
}
return bufferSizeForTarget;
}
// for duplicate header, gen will not recv from TP which has duplicate header, and will not prepare
// buffer for it.
size_t validTpSize = pickUpConnections.size() / targetInfo.mDomainPPSize;
TLLM_CHECK_WITH_INFO(cacheBlockSizeSum % validTpSize == 0,
"cacheBlockSizeSum must be divisible by validTpSize %ld", validTpSize);
TLLM_CHECK_WITH_INFO((cacheBlockSizeSum % (selfAttentionLayerNum * validTpSize)) == 0,
"cacheBlockSizeSum must be divisible by validTpSize %ld * selfAttentionLayerNum %d", validTpSize,
selfAttentionLayerNum);
TLLM_CHECK(targetNum == pickUpConnections.size());
// the sum of buffer size is cacheBlockSizeSum.
size_t cacheBlockSizePerLayer = cacheBlockSizeSum / (validTpSize * selfAttentionLayerNum);
std::vector<size_t> bufferEleSizes(targetNum, 0);
for (size_t i = 0; i < targetNum; i++)
{
auto layerNum = targetInfo.getPeerPPDomainLayerNum(static_cast<SizeType32>(pickUpConnections[i]));
bufferEleSizes[i] = cacheBlockSizePerLayer * layerNum;
}
return bufferEleSizes;
};
auto bufferEleSizes = getTargetBufferEleSize();
size_t remainNoCoverTargetNum = 0;
size_t bufferCoverTargetNum = 0;
std::optional<int> cacheBufferId = std::nullopt;
{
NVTX3_SCOPED_RANGE(formatInputAllocBuffer);
TLLM_CHECK(blockNum > 0);
auto* agentConnnecion
= dynamic_cast<executor::kv_cache::AgentConnection const*>(connections[pickUpConnections[0]]);
if (agentConnnecion != nullptr)
{
cacheBufferId = agentConnnecion->getCacheBufferId();
TLLM_CHECK(cacheBufferId.has_value());
}
else
{
cacheBufferId = mCacheTransBufferManager->assignBufferIndexForRecv();
}
auto [recvSplitCachestmp, bufferCoverTargetNumtmp, onlyUseDynamicBuffer]
= mCacheTransBufferManager->getOrAllocateRecvBuffers(
cacheBufferId, static_cast<int>(targetNum), bufferEleSizes, bufferManager);
TLLM_CHECK(cacheBufferId.has_value() || onlyUseDynamicBuffer);
bufferCoverTargetNum = bufferCoverTargetNumtmp;
remainNoCoverTargetNum = targetNum > bufferCoverTargetNum ? targetNum - bufferCoverTargetNum : 0;
if (agentConnnecion != nullptr)
{
TLLM_CHECK_WITH_INFO(bufferCoverTargetNum == targetNum, "Agent need buffer pre-allocated");
TLLM_CHECK(onlyUseDynamicBuffer == false);
}
recvSplitCaches = std::move(recvSplitCachestmp);
// sync to alloc buffer
bufferManager.getStream().synchronize();
}
session.setTime(TransferSession::kTimePreprocess);
runtime::ITensor::SharedPtr preAllocRecvBuffer = nullptr;
if (cacheBufferId.has_value())
{
preAllocRecvBuffer = mCacheTransBufferManager->getRecvBuffer(cacheBufferId);
TLLM_CHECK(preAllocRecvBuffer != nullptr);
TLLM_CHECK(preAllocRecvBuffer->getDataType() == dataType);
}
auto recvBufferFun = [&](int deviceId, size_t processIdx)
{
NVTX3_SCOPED_RANGE(recvBufferFun);
TLLM_CUDA_CHECK(cudaSetDevice(deviceId));
TLLM_CHECK(pickUpConnections.size() > processIdx);
TLLM_CHECK(recvSplitCaches.size() > processIdx);
auto startTime = LlmRequest::getSteadyClockNow();
size_t size = 0;
if (processIdx >= remainNoCoverTargetNum)
{
llmRequest.updateKvCacheSize((*recvSplitCaches.at(processIdx)).getSizeInBytes());
auto& buffer = recvSplitCaches[processIdx];
size = buffer->getSizeInBytes();
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), " start recv bufferIdx: %d size:%ld", processIdx,
buffer->getSizeInBytes());
session.recv(pickUpConnections[processIdx], buffer->data(), buffer->getSizeInBytes());
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), " recv bufferIdx: %d size:%ld", processIdx,
buffer->getSizeInBytes());
}
else
{
auto recvBufferIdx
= bufferCoverTargetNum == 0 ? 0 : processIdx % bufferCoverTargetNum + remainNoCoverTargetNum;
// bufferCoverTargetNum == 0
auto recvBufferUsed
= bufferCoverTargetNum == 0 ? preAllocRecvBuffer : recvSplitCaches[recvBufferIdx];
size_t remainRecvSize = recvSplitCaches[processIdx]->getSize();
size_t needRecvSize = recvSplitCaches[processIdx]->getSize();
while (remainRecvSize > 0)
{
TLLM_CHECK(recvBufferUsed != nullptr);
auto recvBufferEleSize = recvBufferUsed->getSize();
auto recvSize = std::min(remainRecvSize, recvBufferEleSize);
auto recvSlice = runtime::ITensor::slice(recvBufferUsed, 0, recvSize);
auto copySlice = runtime::ITensor::slice(
recvSplitCaches[processIdx], needRecvSize - remainRecvSize, recvSize);
size += recvSlice->getSizeInBytes();
llmRequest.updateKvCacheSize((*recvSlice).getSizeInBytes());
session.recv(pickUpConnections[processIdx], recvSlice->data(), recvSlice->getSizeInBytes());
bufferManager.copy(*recvSlice, *copySlice);
bufferManager.getStream().synchronize();
remainRecvSize -= recvSize;
}
}
auto endTime = LlmRequest::getSteadyClockNow();
session.appendMeasure(startTime, endTime, size);
};
if (pickUpConnections.size() > 1)
{
if (!common::getEnvEnableReceiveKVCacheParallel())
{
for (size_t i = 0; i < pickUpConnections.size(); i++)
{
recvBufferFun(deviceId, i);
}
}
else
{
// concurrency num
auto concurrencyNum
= std::min(std::max(static_cast<size_t>(1), bufferCoverTargetNum), pickUpConnections.size());
auto remainRecvNum = pickUpConnections.size();
while (remainRecvNum > 0)
{
auto recvConcurrencyNum = std::min(remainRecvNum, concurrencyNum);
if (remainRecvNum > concurrencyNum && remainRecvNum < (2 * concurrencyNum))
{
recvConcurrencyNum = remainRecvNum - concurrencyNum;
}
std::vector<std::future<void>> futures;
futures.reserve(recvConcurrencyNum);
for (size_t i = 0; i < recvConcurrencyNum; i++)
{
TLLM_CHECK((i + (pickUpConnections.size() - remainRecvNum)) < pickUpConnections.size());
futures.push_back(std::async(std::launch::async, recvBufferFun, deviceId,
i + (pickUpConnections.size() - remainRecvNum)));
}
for (auto& future : futures)
{
future.get();
}
remainRecvNum -= recvConcurrencyNum;
}
}
}
else
{
recvBufferFun(deviceId, 0);
}
session.setTime(TransferSession::kTimeTransmissions);
{
NVTX3_SCOPED_RANGE(formatInputConcatenate);
executor::kv_cache::concatKvCacheV2Dispatch(
recvSplitCaches, outputBuffersPerWindow, destConfig, selfConfig, selfIdx, bufferManager);
bufferManager.getStream().synchronize();
if (cacheBufferId.has_value())
{
mCacheTransBufferManager->freeBufferIndexForRecv(cacheBufferId);
}
}
session.setTime(TransferSession::kTimePostprocess);
}
}
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(),
"End receiving KV cache for request ID: %ld, context request ID: %ld.", llmRequest.mRequestId,
llmRequest.getContextPhaseParams().value().getReqId());
}
[[nodiscard]] bool CacheFormatter::inquireSupport(CacheState const& selfConfig, CacheState const& destConfig) const
{
if (selfConfig.getDataType() != destConfig.getDataType())
{
TLLM_LOG_WARNING("CacheFormatter::inquireSupport: selfConfig.getDataType() != destConfig.getDataType()");
return false;
}
std::unordered_set<SizeType32> setVecSelf{
selfConfig.getModelConfig().mNbKvHeadsPerLayer.begin(), selfConfig.getModelConfig().mNbKvHeadsPerLayer.end()};
if (setVecSelf.size() != 1)
{
TLLM_LOG_WARNING("CacheFormatter::inquireSupport: only support equal number of heads per layer");
return false;
}
if (selfConfig.getAttentionConfig().mAttentionType != destConfig.getAttentionConfig().mAttentionType)
{
TLLM_LOG_WARNING("CacheFormatter::inquireSupport: only support same attention type");
return false;
}
if (selfConfig.getAttentionConfig().mKvFactor != destConfig.getAttentionConfig().mKvFactor)
{
TLLM_LOG_WARNING("CacheFormatter::inquireSupport: only support same kv factor");
return false;
}
if (selfConfig.getAttentionConfig().mAttentionType == CacheState::AttentionType::kMLA)
{
TLLM_LOG_WARNING("CacheFormatter::inquireSupport: only support non-MLA");
return false;
}
if (selfConfig.getParallelConfig().mContextParallelism != 1
|| destConfig.getParallelConfig().mContextParallelism != 1)
{
TLLM_LOG_WARNING(
"CacheFormatter::inquireSupport: context parallelism is not currently supported (selfCP=%d, destCP=%d).",
selfConfig.getParallelConfig().mContextParallelism, destConfig.getParallelConfig().mContextParallelism);
return false;
}
std::unordered_set<int> setVecDest{
destConfig.getModelConfig().mNbKvHeadsPerLayer.begin(), destConfig.getModelConfig().mNbKvHeadsPerLayer.end()};
if (setVecDest.size() != 1)
{
TLLM_LOG_WARNING("CacheFormatter::inquireSupport: only support same number of heads per layer");
return false;
}
if (selfConfig.getModelConfig().mTokensPerBlock != destConfig.getModelConfig().mTokensPerBlock
|| selfConfig.getModelConfig().mSizePerHead != destConfig.getModelConfig().mSizePerHead)
{
TLLM_LOG_WARNING("CacheFormatter::inquireSupport: only support same tokens per block and size per head");
return false;
}
if (selfConfig.getModelConfig().mNbKvHeadsPerLayer.size() != destConfig.getModelConfig().mNbKvHeadsPerLayer.size())
{
TLLM_LOG_WARNING("CacheFormatter::inquireSupport: only support same number of layers");
TLLM_LOG_WARNING("self: %zu dest %zu", selfConfig.getModelConfig().mNbKvHeadsPerLayer.size(),
destConfig.getModelConfig().mNbKvHeadsPerLayer.size());
return false;
}
return true;
}
std::unique_ptr<BaseCacheFormatter> createCacheFormatter(
BaseKVCacheManager* cacheManager, std::vector<CacheTransBufferManager*> const& cacheTransBufferManagers, bool isMLA)
{
TLLM_CHECK(!cacheTransBufferManagers.empty());
if (isMLA)
{
return std::make_unique<MLACacheFormatter>(cacheManager, cacheTransBufferManagers);
}
return std::make_unique<CacheFormatter>(cacheManager, cacheTransBufferManagers[0]);
}
} // namespace tensorrt_llm::batch_manager::kv_cache_manager