TensorRT-LLMs/cpp/tensorrt_llm/batch_manager/createNewDecoderRequests.cpp
Robin Kobus e2f69c5c23
[None] [refactor] Minor cleanup and improvements (#7619)
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-10-03 11:40:06 +02:00

753 lines
35 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/batch_manager/createNewDecoderRequests.h"
#include "tensorrt_llm/batch_manager/decoderBuffers.h"
#include "tensorrt_llm/batch_manager/llmRequest.h"
#include "tensorrt_llm/batch_manager/medusaBuffers.h"
#include "tensorrt_llm/batch_manager/utils/logitsThread.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/nvtxUtils.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/decoderState.h"
#include "tensorrt_llm/runtime/decodingInput.h"
#include "tensorrt_llm/runtime/decodingOutput.h"
#include "tensorrt_llm/runtime/iBuffer.h"
#include "tensorrt_llm/runtime/runtimeKernels.h"
#include "tensorrt_llm/runtime/speculativeDecodingMode.h"
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
#include "tensorrt_llm/runtime/utils/speculativeChoicesUtils.h"
#include <NvInferRuntimeBase.h>
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
namespace te = tensorrt_llm::executor;
namespace tr = tensorrt_llm::runtime;
namespace tensorrt_llm::batch_manager
{
using SizeType32 = CreateNewDecoderRequests::SizeType32;
using TensorPtr = CreateNewDecoderRequests::TensorPtr;
using SharedConstPtr = CreateNewDecoderRequests::SharedConstPtr;
template <typename T>
using OptionalRef = tensorrt_llm::common::OptionalRef<T>;
namespace
{
void copySequenceLengths(RequestVector const& contextRequests, DecoderInputBuffers& inputBuffers,
ITensor& sequenceLengths, SizeType32 beamWidth, runtime::CudaStream const& stream)
{
auto const bufferManager = BufferManager{std::make_shared<CudaStream>(stream.get())};
auto const batchSize = contextRequests.size();
auto batchSlotsView = tr::ITensor::slice(inputBuffers.setupBatchSlots, 0, batchSize);
auto fillValuesView = tr::ITensor::slice(inputBuffers.fillValues, 0, batchSize);
auto batchSlotsRange = tr::BufferRange<SizeType32>(*batchSlotsView);
auto fillValuesRange = tr::BufferRange<SizeType32>(*fillValuesView);
// fill buffers on host
SizeType32 batchIdx{0};
for (auto const& llmReq : contextRequests)
{
auto const disaggFirstGenTokenSize
= llmReq->getContextPhaseParams() ? llmReq->getContextPhaseParams().value().getFirstGenTokens().size() : 0;
auto const currentSequenceLen
= llmReq->mPromptLen + llmReq->getMaxNumGeneratedTokens() + disaggFirstGenTokenSize;
// Get position of the current sequence in the decoder
auto const seqSlot = llmReq->mSeqSlot.value();
batchSlotsRange[batchIdx] = seqSlot;
fillValuesRange[batchIdx] = currentSequenceLen;
++batchIdx;
}
// copy sequence lengths
{
auto batchSlotsDeviceView = tr::ITensor::slice(inputBuffers.setupBatchSlotsDevice, 0, batchSize);
auto fillValuesViewDevice = tr::ITensor::slice(inputBuffers.fillValuesDevice, 0, batchSize);
bufferManager.copy(*batchSlotsView, *batchSlotsDeviceView);
bufferManager.copy(*fillValuesView, *fillValuesViewDevice);
tr::kernels::invokeFillBatch(sequenceLengths, *batchSlotsDeviceView, beamWidth, *fillValuesViewDevice, stream);
}
}
/// @brief Retrieve the embedding bias from the request. This potentially makes a copy of the tensor
/// to the appropriate type if the input tensor does not match it.
[[nodiscard]] TensorPtr getEmbeddingBias(nvinfer1::DataType logitsType, TensorPtr const& tensor)
{
// Check that embedding bias type is same as logits type. If so, we can return the tensor right away
if (tensor->getDataType() == logitsType)
{
return tensor;
}
// Support FP32 input for FP16 embedding bias (in the case of FP8 models)
if (tensor->getDataType() == nvinfer1::DataType::kFLOAT && logitsType == nvinfer1::DataType::kHALF)
{
// Do a deep copy of the tensor to the expected type
TLLM_LOG_WARNING(
"Embedding bias data type must be same as model logits type, will copy the tensor from float to half");
TLLM_CHECK_WITH_INFO(
tensor->getMemoryType() != MemoryType::kGPU, "Embedding bias tensor needs to be in CPU memory for casting");
auto const shape = tensor->getShape();
TLLM_CHECK(shape.nbDims == 2); // [1, vocabSizePadded]
TLLM_CHECK(shape.d[0] == 1);
auto newTensor = tensorrt_llm::runtime::BufferManager::pinnedPool(shape, logitsType);
auto const tensorRange = BufferRange<float>(*tensor);
auto newTensorRange = BufferRange<half>(*newTensor);
std::transform(tensorRange.begin(), tensorRange.end(), newTensorRange.begin(),
[](float value) -> half { return static_cast<half>(value); });
return newTensor;
}
TLLM_THROW("Embedding bias data type must be same as model logits type.");
}
} // namespace
std::tuple<TensorPtr, std::vector<runtime::SamplingConfig>, std::vector<runtime::ITensor::SharedConstPtr>,
std::vector<executor::LookaheadDecodingConfig>>
CreateNewDecoderRequests::operator()(runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig,
executor::DecodingConfig const& decodingConfig, RequestVector const& contextRequests, nvinfer1::DataType logitsType,
DecoderInputBuffers& inputBuffers, runtime::decoder::DecoderState& decoderState, CudaStream const& runtimeStream,
CudaStream const& decoderStream, SizeType32 maxSequenceLength, SizeType32 beamWidth,
OptionalRef<MedusaBuffers const> medusaBuffers) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
NVTX3_SCOPED_RANGE(CreateNewDecoderRequests);
RequestVector finishedContextRequests;
std::copy_if(contextRequests.begin(), contextRequests.end(), std::back_inserter(finishedContextRequests),
[](auto const& llmReq) { return llmReq->isLastContextChunk(); });
if (!finishedContextRequests.empty())
{
copySequenceLengths(
finishedContextRequests, inputBuffers, *decoderState.getSequenceLengths(), beamWidth, runtimeStream);
}
auto [lookaheadPrompt, lookaheadAlgoConfigs]
= createDecoderRequests(finishedContextRequests, inputBuffers.inputsIds, decodingConfig, decoderState,
logitsType, modelConfig, worldConfig, runtimeStream, decoderStream, maxSequenceLength, medusaBuffers);
auto const batchSize = finishedContextRequests.size();
std::vector<SamplingConfig> samplingConfigs;
samplingConfigs.reserve(batchSize);
for (auto const& llmReq : finishedContextRequests)
{
samplingConfigs.push_back(llmReq->mSamplingConfig);
}
TensorPtr batchSlotsView = runtime::ITensor::slice(inputBuffers.setupBatchSlots, 0, batchSize);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
return {std::move(batchSlotsView), std::move(samplingConfigs), std::move(lookaheadPrompt),
std::move(lookaheadAlgoConfigs)};
}
namespace
{
void initializeInputLengths(DecodingInput& dJointInput, SizeType32 batchSlot, SizeType32 inputLength,
std::optional<SizeType32> maxNewTokensOpt, SizeType32 numDecodingEngineTokens, SizeType32 maxSequenceLength,
BufferManager const& manager)
{
auto const numDecodingDraftEngineTokens = numDecodingEngineTokens - 1;
auto const maxNewTokens = maxNewTokensOpt.value_or(maxSequenceLength - inputLength - numDecodingDraftEngineTokens);
TLLM_CHECK_WITH_INFO(inputLength + maxNewTokens + numDecodingDraftEngineTokens <= maxSequenceLength,
tc::fmtstr(
"Input length (%d) + max new tokens (%d) + draft tokens (%d) must be less than max sequence length (%d).",
inputLength, maxNewTokens, numDecodingDraftEngineTokens, maxSequenceLength));
TensorPtr const sequenceLimitLength{
ITensor::slice(constPointerCast(dJointInput.sequenceLimitLength), batchSlot, 1)};
runtime::kernels::invokeFill(*sequenceLimitLength, inputLength + maxNewTokens, manager.getStream());
TensorPtr const inputLengths{ITensor::slice(constPointerCast(dJointInput.lengths), batchSlot, 1)};
runtime::kernels::invokeFill(*inputLengths, inputLength, manager.getStream());
}
void initializeRequestIds(DecodingInput& dJointInput, DecodingOutput& dJointOutput, SizeType32 batchSlot,
SharedConstPtr const& requestIds, SizeType32 endId, SizeType32 beamWidth, SizeType32 maxSequenceLength,
BufferManager const& manager)
{
TensorPtr const endIdTensorPtr{ITensor::slice(constPointerCast(dJointInput.endIds), batchSlot, 1)};
runtime::kernels::invokeFill(*endIdTensorPtr, endId, manager.getStream());
// fill outputIds with endIds
TensorPtr const outputIds = ITensor::slice(dJointOutput.ids, batchSlot, 1);
auto outputIdsTileView = ITensor::view(outputIds, ITensor::makeShape({beamWidth, maxSequenceLength}));
runtime::kernels::invokeFill(*outputIdsTileView, endId, manager.getStream());
// copy the request ids into outputIds
auto const requestIdsShape = requestIds->getShape();
auto outputIdsView = ITensor::view(outputIds, requestIdsShape);
manager.copy(*requestIds, *outputIdsView);
}
void initializeBeamSearch(DecodingInput& dJointInput, DecodingOutput& dJointOutput, SizeType32 batchSlot,
SizeType32 endId, SizeType32 beamWidth, SizeType32 maxSequenceLength, BufferManager const& manager)
{
TensorPtr const cumLogProbs = ITensor::slice(dJointOutput.cumLogProbs, batchSlot, 1);
runtime::kernels::invokeFill(
*IBuffer::slice(cumLogProbs, 1, beamWidth - 1), DecodingOutput::kNegativeInfinity, manager.getStream());
auto parentIds = ITensor::slice(dJointOutput.parentIds, batchSlot, 1);
auto const outputIdsShape = ITensor::makeShape({1, beamWidth, maxSequenceLength});
parentIds->reshape(outputIdsShape);
manager.setZero(*parentIds);
auto cacheIndirectionInput = ITensor::slice(dJointInput.cacheIndirection, batchSlot, 1);
manager.setZero(*cacheIndirectionInput);
auto cacheIndirectionOutput = ITensor::slice(dJointOutput.cacheIndirection, batchSlot, 1);
manager.setZero(*cacheIndirectionOutput);
auto beamHypotheses = dJointOutput.beamHypotheses.slice(batchSlot, 1);
beamHypotheses.init(manager, endId);
}
void initializeEmbeddingBias(DecodingInput& dJointInput, SizeType32 batchSlot,
std::optional<TensorPtr> const& embeddingBias, nvinfer1::DataType logitsType,
runtime::ModelConfig const& modelConfig, BufferManager const& manager)
{
TensorPtr const embeddingBiasSlice = ITensor::slice(constPointerCast(dJointInput.embeddingBias), batchSlot, 1);
if (embeddingBias.has_value())
{
auto embeddingBiasTensor = getEmbeddingBias(logitsType, embeddingBias.value());
TLLM_CHECK(embeddingBiasTensor->getShape().nbDims == 2);
TLLM_CHECK(embeddingBiasTensor->getShape().d[0] == 1);
TLLM_CHECK_WITH_INFO(embeddingBiasTensor->getShape().d[1] == modelConfig.getVocabSize(),
"The embedding bias shape is not as expected. Expected last dimension to be same as vocab size: %d.",
modelConfig.getVocabSize());
manager.copy(*embeddingBiasTensor, *embeddingBiasSlice);
}
else
{
manager.setZero(*embeddingBiasSlice);
}
}
void setupWords(std::vector<runtime::ITensor::SharedPtr>& jointWordsLists,
std::optional<TensorPtr> const& requestWordsList, SharedConstPtr& jointWordsPtrs, SharedConstPtr& jointWordsLens,
SizeType32& jointMaxWordsLen, SizeType32 batchSlot, BufferManager const& manager)
{
if (requestWordsList.has_value())
{
// Move to GPU and remove leading bs1 dimension since this is what decoderRequest expects
TensorPtr wordsList = manager.copyFrom(*requestWordsList.value(), MemoryType::kGPU);
wordsList->squeeze(0);
auto const wordsLen = wordsList->getShape().d[1];
BufferRange<int32_t*>(*constPointerCast(jointWordsPtrs))[batchSlot]
= runtime::bufferCast<TokenIdType>(*wordsList);
runtime::bufferCast<SizeType32>(*constPointerCast(jointWordsLens))[batchSlot] = wordsLen;
// FIXME: this is monotonically growing size
jointMaxWordsLen = std::max(static_cast<SizeType32>(wordsLen), jointMaxWordsLen);
// NOTE: jointWordsList is not used in gptDecoder, but required to keep <name>WordsList's
// memory allocated
jointWordsLists[batchSlot] = wordsList;
}
else
{
runtime::bufferCast<SizeType32>(*constPointerCast(jointWordsLens))[batchSlot] = 0;
}
};
void initializeLogProbs(DecodingOutput& dJointOutput, SizeType32 batchSlot, SamplingConfig const& samplingConfig,
BufferManager const& manager)
{
auto const beamWidth = samplingConfig.beamWidth;
// cumLogProb is mandatory for beamWidth > 1
if ((samplingConfig.cumLogProbs.has_value() && samplingConfig.cumLogProbs->at(0)) || beamWidth > 1)
{
auto cumLogProbs = ITensor::slice(dJointOutput.cumLogProbs, batchSlot, 1);
manager.setZero(*cumLogProbs);
}
if (samplingConfig.outputLogProbs.has_value() && samplingConfig.outputLogProbs->at(0))
{
auto logProbs = ITensor::slice(dJointOutput.logProbs, batchSlot, 1);
manager.setZero(*logProbs);
}
}
void initializeOutputs(DecodingOutput& dJointOutput, SizeType32 batchSlot, SizeType32 maxDecodingEngineTokens,
BufferManager const& manager)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto finishedSum = ITensor::slice(dJointOutput.finishedSum, batchSlot, 1);
manager.setZero(*finishedSum);
for (SizeType32 ti = 0; ti < maxDecodingEngineTokens; ++ti)
{
TensorPtr const newTokensStepView = ITensor::slice(dJointOutput.newTokensSteps, ti, 1);
newTokensStepView->squeeze(0);
auto newTokensVec = ITensor::slice(newTokensStepView, batchSlot, 1);
manager.setZero(*newTokensVec);
}
TensorPtr const finishedStepsSlice = ITensor::slice(dJointOutput.finishReasons, batchSlot, 1);
manager.setZero(*finishedStepsSlice);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void retrieveDraftLogits(TensorPtr& draftLogitsHost, std::shared_ptr<runtime::ITensor> const& reqDraftLogits,
ModelConfig const& modelConfig, WorldConfig const& worldConfig, bool speculativeDecodingFastLogits,
bool isLeaderInOrchMode, BufferManager const& bufferManager)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
if (!speculativeDecodingFastLogits)
{
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
bufferManager.copy(*reqDraftLogits, *draftLogitsHost);
return;
}
if (isLeaderInOrchMode)
{
// reqDraftLogits contains metadata for fast-logits path; validate size.
auto constexpr fastLogitsInfoSize = sizeof(te::SpeculativeDecodingFastLogitsInfo);
TLLM_CHECK_WITH_INFO(reqDraftLogits->getSizeInBytes() >= fastLogitsInfoSize,
"Draft logits metadata buffer is too small to hold SpeculativeDecodingFastLogitsInfo.");
te::SpeculativeDecodingFastLogitsInfo fastLogitsInfo{};
std::memcpy(&fastLogitsInfo, reqDraftLogits->data(), fastLogitsInfoSize);
utils::targetModelReceiveLogits(draftLogitsHost, fastLogitsInfo, modelConfig.getLogitsDtype());
// Broadcast to other ranks if needed
if (worldConfig.isTensorParallel())
{
auto const& commSession = COMM_SESSION;
auto shape = draftLogitsHost->getShape();
commSession.bcastValue(shape.d[0], 0);
commSession.bcastValue(shape.d[1], 0);
commSession.bcast(draftLogitsHost->data(), draftLogitsHost->getSizeInBytes(), mpi::MpiType::kUINT8, 0);
}
}
else
{
TLLM_CHECK_WITH_INFO(worldConfig.isTensorParallel(),
"Fast logits path requires tensor-parallel broadcast for non-leader ranks.");
// Get logits from leader rank
auto const& commSession = COMM_SESSION;
int64_t dims[2];
commSession.bcastValue(dims[0], 0);
commSession.bcastValue(dims[1], 0);
draftLogitsHost->reshape(ITensor::makeShape({dims[0], dims[1]}));
commSession.bcast(draftLogitsHost->data(), draftLogitsHost->getSizeInBytes(), mpi::MpiType::kUINT8, 0);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
};
//! @brief Setups decoder internal tensors for new request in Draft model Sps mode
void newRequestDraftTokensExternal(DecodingInput& jointDecodingInput, SizeType32 batchIdx, LlmRequest const& llmReq,
SizeType32 numDecodingEngineTokens, runtime::ModelConfig const& modelConfig, WorldConfig const& worldConfig,
bool speculativeDecodingFastLogits, bool isLeaderInOrchMode, CudaStream const& decoderStream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
BufferManager decoderBufferManager{std::make_shared<CudaStream>(decoderStream.get())};
TLLM_CHECK(jointDecodingInput.externalDraftTokensInputs);
auto& externalDraftTokensInputs = jointDecodingInput.externalDraftTokensInputs;
auto const& draftTokens = llmReq.getDraftTokens();
auto const numDraftTokens = numDecodingEngineTokens - 1;
auto numDraftTokensHostRange = runtime::BufferRange<SizeType32>(*externalDraftTokensInputs->numDraftTokensHost);
numDraftTokensHostRange[batchIdx] = numDraftTokens;
auto numDraftTokensView = ITensor::slice(externalDraftTokensInputs->numDraftTokens, batchIdx, 1);
runtime::kernels::invokeFill(*numDraftTokensView, numDraftTokens, decoderStream);
if (numDraftTokens > 0)
{
TensorPtr draftTokenIdsHostSlice
= ITensor::slice(externalDraftTokensInputs->draftTokenIdsHost, {batchIdx, 0}, numDraftTokens);
// Copy to pinned host memory (don't care about stream of bufferManager)
decoderBufferManager.copy(draftTokens->data(), *draftTokenIdsHostSlice);
TensorPtr draftTokenIdsSlice
= ITensor::slice(externalDraftTokensInputs->draftTokenIds, {batchIdx, 0}, numDraftTokens);
decoderBufferManager.copy(*draftTokenIdsHostSlice, *draftTokenIdsSlice);
}
auto const& draftLogits = llmReq.getDraftLogits();
auto const useDraftLogits = draftLogits.has_value();
auto useDraftLogitsHostRange = runtime::BufferRange<bool>(*externalDraftTokensInputs->useDraftLogitsHost);
useDraftLogitsHostRange[batchIdx] = useDraftLogits;
auto useDraftLogitsView = ITensor::slice(externalDraftTokensInputs->useDraftLogits, batchIdx, 1);
runtime::kernels::invokeFill(*useDraftLogitsView, useDraftLogits, decoderStream);
if (useDraftLogits)
{
TensorPtr draftLogitsHostSlice
= ITensor::slice(externalDraftTokensInputs->draftLogitsHost, {batchIdx, 0}, numDraftTokens);
retrieveDraftLogits(draftLogitsHostSlice, draftLogits.value(), modelConfig, worldConfig,
speculativeDecodingFastLogits, isLeaderInOrchMode, decoderBufferManager);
TensorPtr draftLogitsSlice
= ITensor::slice(externalDraftTokensInputs->draftLogits, {batchIdx, 0}, numDraftTokens);
decoderBufferManager.copy(*draftLogitsHostSlice, *draftLogitsSlice);
}
auto const& samplingConfig = llmReq.mSamplingConfig;
bool const useRandomAcceptanceThreshold = !samplingConfig.draftAcceptanceThreshold.has_value();
float const constantThreshold
= useRandomAcceptanceThreshold ? 0 : samplingConfig.draftAcceptanceThreshold.value()[0];
externalDraftTokensInputs->useRandomAcceptanceThreshold = useRandomAcceptanceThreshold;
externalDraftTokensInputs->constantThreshold = constantThreshold;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
//! @brief Setups decoder internal tensors for new Medusa request
void newRequestMedusa(DecodingInput& jointDecodingInput, SizeType32 batchIdx, LlmRequest& llmReq,
SizeType32 numDecodingEngineTokens, SizeType32 maxDecodingEngineTokens, MedusaBuffers const& medusaBuffers,
CudaStream const& decoderStream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
llmReq.mSamplingConfig.topKMedusaHeads = {medusaBuffers.mTopKs};
// FIXME: we must set medusa paths and tree ids not from seq slot, but from llmRequest?
// When multiple microbatches buffers are used, runtime buffers can not be addressed with seqSlot.
auto medusaPaths = ITensor::slice(medusaBuffers.medusaPathsDevice, 0, 1);
auto medusaTreeIds = ITensor::slice(medusaBuffers.medusaTreeIdsDevice, 0, 1);
BufferManager manager{std::make_shared<CudaStream>(decoderStream.get())};
auto& medusaInputs = jointDecodingInput.medusaInputs;
TensorPtr curTokensPerStepSlice
= ITensor::slice(constPointerCast(medusaInputs->medusaCurTokensPerStep), batchIdx, 1);
// Context phase Medusa processes 1 token only, new value from targetTokensPerStep will be filled at the end
// of first decoder
runtime::kernels::invokeFill(*curTokensPerStepSlice, 1, decoderStream);
TensorPtr targetTokensPerStepSlice
= ITensor::slice(constPointerCast(medusaInputs->medusaTargetTokensPerStep), batchIdx, 1);
TLLM_CHECK_WITH_INFO(numDecodingEngineTokens <= maxDecodingEngineTokens,
"Tokens per step for (%d) is larger than maximum tokens per step (%d)", numDecodingEngineTokens,
maxDecodingEngineTokens);
runtime::kernels::invokeFill(*targetTokensPerStepSlice, numDecodingEngineTokens, decoderStream);
TensorPtr pathsSlice = ITensor::slice(constPointerCast(medusaInputs->medusaPaths), batchIdx, 1);
manager.copy(*medusaPaths, *pathsSlice);
TensorPtr treeIdsSlice = ITensor::slice(constPointerCast(medusaInputs->medusaTreeIds), batchIdx, 1);
manager.copy(*medusaTreeIds, *treeIdsSlice);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
//! @brief Setups decoder internal tensors for new Lookahead request
void newRequestLookahead(DecodingInput& jointDecodingInput, DecodingOutput& jointDecodingOutput, SizeType32 batchIdx,
CudaStream const& runtimeStream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(jointDecodingOutput.lookaheadOutputs);
TLLM_CHECK(jointDecodingInput.lookaheadInputs);
// The first generation step only generate 1 token.
TensorPtr curTokensPerStepSlice
= ITensor::slice(constPointerCast(jointDecodingInput.lookaheadInputs->tokensPerStep), batchIdx, 1);
runtime::kernels::invokeFill(*curTokensPerStepSlice, 1, runtimeStream);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
//! @brief Setups decoder internal tensors for new Explicit draft tokens request
void newRequestExplicitDraftTokens(
DecodingOutput& jointDecodingOutput, SizeType32 batchIdx, LlmRequest const& llmReq, CudaStream const& runtimeStream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(jointDecodingOutput.explicitDraftTokensBuffers);
auto const inputLen = llmReq.getPromptLen();
TensorPtr positionIdsBaseSlice
= ITensor::slice(jointDecodingOutput.explicitDraftTokensBuffers->positionIdsBase, batchIdx, 1);
runtime::kernels::invokeFill(*positionIdsBaseSlice, inputLen, runtimeStream);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
//! @brief Setups decoder internal tensors for new Eagle request
void newRequestEagle(DecodingOutput& jointDecodingOutput, SizeType32 batchIdx, LlmRequest const& llmReq,
runtime::ModelConfig const& modelConfig, executor::DecodingConfig const& decodingConfig,
CudaStream const& runtimeStream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(jointDecodingOutput.eagleBuffers);
auto& eagleBuffers = *jointDecodingOutput.eagleBuffers;
auto const inputLen = llmReq.getPromptLen();
BufferManager manager{std::make_shared<CudaStream>(runtimeStream.get())};
TensorPtr eagleNetCtxRequestTypesHostSlice = ITensor::slice(eagleBuffers.eagleNetCtxRequestTypesHost, batchIdx, 1);
TensorPtr eagleNetCtxContextLengthsHostSlice
= ITensor::slice(eagleBuffers.eagleNetCtxContextLengthsHost, batchIdx, 1);
TensorPtr eagleNetCtxPastKeyValueLengthsHostSlice
= ITensor::slice(eagleBuffers.eagleNetCtxPastKeyValueLengthsHost, batchIdx, 1);
runtime::bufferCast<SizeType32>(*eagleNetCtxRequestTypesHostSlice)[0] = 0;
runtime::bufferCast<SizeType32>(*eagleNetCtxContextLengthsHostSlice)[0] = inputLen;
runtime::bufferCast<SizeType32>(*eagleNetCtxPastKeyValueLengthsHostSlice)[0] = inputLen;
TensorPtr eagleNetGenRequestTypesHostSlice = ITensor::slice(eagleBuffers.eagleNetGenRequestTypesHost, batchIdx, 1);
TensorPtr eagleNetGenContextLengthsHostSlice
= ITensor::slice(eagleBuffers.eagleNetGenContextLengthsHost, batchIdx, 1);
TensorPtr eagleNetGenPastKeyValueLengthsHostSlice
= ITensor::slice(eagleBuffers.eagleNetGenPastKeyValueLengthsHost, batchIdx, 1);
runtime::bufferCast<SizeType32>(*eagleNetGenRequestTypesHostSlice)[0] = 1;
runtime::bufferCast<SizeType32>(*eagleNetGenContextLengthsHostSlice)[0] = inputLen;
runtime::bufferCast<SizeType32>(*eagleNetGenPastKeyValueLengthsHostSlice)[0] = inputLen;
auto const eagleModule = std::dynamic_pointer_cast<tensorrt_llm::runtime::EagleModule const>(
modelConfig.getSpeculativeDecodingModulePtr());
std::optional<executor::EagleChoices> eagleChoicesOpt;
auto const& eagleConfig = llmReq.getEagleConfig() ? llmReq.getEagleConfig() : decodingConfig.getEagleConfig();
if (eagleConfig)
{
eagleChoicesOpt = eagleConfig->getEagleChoices();
}
if (!eagleConfig || !eagleConfig->useDynamicTree())
{
TensorPtr draftPathsHostSlice = ITensor::slice(eagleBuffers.draftPathsHost, batchIdx, 1);
TensorPtr draftPathsSlice = ITensor::slice(eagleBuffers.draftPaths, batchIdx, 1);
// eagleConfig is nullptr or Eagle-1
std::vector<SizeType32> topKs;
auto const depth = runtime::utils::initTensorsFromChoices(modelConfig.getSpeculativeDecodingModule(),
eagleChoicesOpt.value_or(eagleModule->getDefaultEagleChoices()), topKs, nullptr, nullptr, nullptr,
draftPathsHostSlice, nullptr, {eagleModule->getMaxNonLeafNodesPerLayer()});
TLLM_CHECK_WITH_INFO(depth == modelConfig.getSpeculativeDecodingModule().getMaxDraftPathLen(),
"EAGLE-1 requires Eagle-tree depth being equal to the the number of build-time EAGLE layers.");
manager.copy(*draftPathsHostSlice, *draftPathsSlice);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
//! @brief Setups decoder internal tensors for new speculative decoding request
void newRequestSpeculativeDecoding(DecodingInput& jointDecodingInput, DecodingOutput& jointDecodingOutput,
SizeType32 batchIdx, LlmRequest& llmReq, SpeculativeDecodingMode const& speculativeDecodingMode,
SizeType32 numDecodingEngineTokens, SizeType32 maxDecodingEngineTokens,
OptionalRef<MedusaBuffers const> medusaBuffers, runtime::ModelConfig const& modelConfig,
WorldConfig const& worldConfig, executor::DecodingConfig const& decodingConfig, bool speculativeDecodingFastLogits,
bool isLeaderInOrchMode, CudaStream const& runtimeStream, CudaStream const& decoderStream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
if (speculativeDecodingMode.predictsDraftTokens())
{
BufferManager manager{std::make_shared<CudaStream>(decoderStream.get())};
TLLM_CHECK(jointDecodingOutput.speculativeDecodingOutputs);
auto& speculativeDecodingOutputs = *jointDecodingOutput.speculativeDecodingOutputs;
TensorPtr nextDraftTokens = ITensor::slice(speculativeDecodingOutputs.nextDraftTokens, batchIdx, 1);
// FIXME: can we skip this?
manager.setZero(*nextDraftTokens);
if (speculativeDecodingMode.variableDraftLength())
{
TensorPtr nextDraftTokensLen = ITensor::slice(speculativeDecodingOutputs.nextDraftTokensLen, batchIdx, 1);
manager.setZero(*nextDraftTokensLen);
}
}
if (speculativeDecodingMode.isDraftTokensExternal())
{
newRequestDraftTokensExternal(jointDecodingInput, batchIdx, llmReq, numDecodingEngineTokens, modelConfig,
worldConfig, speculativeDecodingFastLogits, isLeaderInOrchMode, decoderStream);
}
else if (speculativeDecodingMode.isMedusa())
{
TLLM_CHECK(medusaBuffers);
newRequestMedusa(jointDecodingInput, batchIdx, llmReq, numDecodingEngineTokens, maxDecodingEngineTokens,
medusaBuffers.value(), decoderStream);
}
else if (speculativeDecodingMode.isLookaheadDecoding())
{
newRequestLookahead(jointDecodingInput, jointDecodingOutput, batchIdx, runtimeStream);
}
else if (speculativeDecodingMode.isExplicitDraftTokens())
{
newRequestExplicitDraftTokens(jointDecodingOutput, batchIdx, llmReq, runtimeStream);
}
else if (speculativeDecodingMode.isEagle())
{
newRequestEagle(jointDecodingOutput, batchIdx, llmReq, modelConfig, decodingConfig, runtimeStream);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
} // namespace
std::tuple<std::vector<runtime::ITensor::SharedConstPtr>, std::vector<executor::LookaheadDecodingConfig>>
CreateNewDecoderRequests::createDecoderRequests(RequestVector const& finishedContextRequests, TensorPtr const& inputIds,
executor::DecodingConfig const& decodingConfig, runtime::decoder::DecoderState& decoderState,
nvinfer1::DataType logitsType, runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig,
runtime::CudaStream const& runtimeStream, runtime::CudaStream const& decoderStream, SizeType32 maxSequenceLength,
OptionalRef<MedusaBuffers const> medusaBuffers) const
{
auto const decoderBufferManager = BufferManager{std::make_shared<CudaStream>(decoderStream.get())};
unsigned decoderInputSize{0};
for (auto const& llmReq : finishedContextRequests)
{
auto const& reqTokens = llmReq->getTokens(0);
decoderInputSize += reqTokens.size();
}
inputIds->resize(decoderInputSize);
std::vector<runtime::ITensor::SharedConstPtr> lookaheadPrompt;
std::vector<executor::LookaheadDecodingConfig> lookaheadAlgoConfigs;
if (modelConfig.getSpeculativeDecodingMode().isLookaheadDecoding())
{
TLLM_CHECK_WITH_INFO(
decodingConfig.getLookaheadDecodingConfig().has_value(), "Lookahead decoding config must be provided");
lookaheadPrompt.reserve(finishedContextRequests.size());
lookaheadAlgoConfigs.reserve(finishedContextRequests.size());
}
SizeType32 inputOffset{0};
for (auto const& llmReq : finishedContextRequests)
{
llmReq->mSamplingConfig.normalizeLogProbs = mIsNormalizeLogProbs;
TLLM_CHECK(llmReq->mSeqSlot.has_value());
auto const batchSlot = llmReq->mSeqSlot.value();
auto const batchSize = decoderState.getMaxNumSequences();
TLLM_CHECK(0 <= batchSlot && batchSlot < batchSize);
auto const& samplingConfig = llmReq->mSamplingConfig;
auto const beamWidth = samplingConfig.beamWidth;
auto const maxBeamWidth = decoderState.getMaxBeamWidth();
TLLM_CHECK_WITH_INFO(beamWidth <= maxBeamWidth,
tc::fmtstr("Beam width (%d) must be smaller than maxBeamWidth (%d) passed to decoder setup function.",
beamWidth, maxBeamWidth));
decoderState.setBeamWidth(batchSlot, beamWidth);
auto const promptLen = llmReq->getPromptLen();
SizeType32 numDecodingEngineTokens{1};
if (modelConfig.getSpeculativeDecodingMode().isDraftTokensExternal())
{
numDecodingEngineTokens = llmReq->getNumDraftTokens() + 1;
}
else if (!modelConfig.getSpeculativeDecodingMode().isNone())
{
numDecodingEngineTokens = modelConfig.getMaxDecodingTokens();
}
auto& dJointInput = decoderState.getJointDecodingInput();
initializeInputLengths(dJointInput, batchSlot, promptLen, llmReq->mMaxNewTokens, numDecodingEngineTokens,
maxSequenceLength, decoderBufferManager);
decoderState.setNumDecodingEngineTokens(batchSlot, numDecodingEngineTokens);
initializeEmbeddingBias(
dJointInput, batchSlot, llmReq->getEmbeddingBias(), logitsType, modelConfig, decoderBufferManager);
setupWords(dJointInput.badWordsLists, llmReq->getBadWordsList(), dJointInput.badWordsPtrs,
dJointInput.badWordsLens, dJointInput.maxBadWordsLen, batchSlot, decoderBufferManager);
setupWords(dJointInput.stopWordsLists, llmReq->getStopWordsList(), dJointInput.stopWordsPtrs,
dJointInput.stopWordsLens, dJointInput.maxStopWordsLen, batchSlot, decoderBufferManager);
auto& dJointOutput = decoderState.getJointDecodingOutput();
initializeOutputs(dJointOutput, batchSlot, decoderState.getMaxDecodingEngineTokens(), decoderBufferManager);
initializeLogProbs(dJointOutput, batchSlot, samplingConfig, decoderBufferManager);
auto const& reqTokens = llmReq->getTokens(0);
TLLM_CHECK(reqTokens.size() == static_cast<decltype(reqTokens.size())>(promptLen));
TensorPtr requestIds = ITensor::slice(inputIds, inputOffset, promptLen);
// Copy to pinned host memory (don't care about stream of bufferManager)
decoderBufferManager.copy(reqTokens.data(), *requestIds);
auto const endId = llmReq->mEndId.value_or(-1);
initializeRequestIds(dJointInput, dJointOutput, batchSlot, requestIds, endId, beamWidth, maxSequenceLength,
decoderBufferManager);
if (beamWidth > 1)
{
initializeBeamSearch(
dJointInput, dJointOutput, batchSlot, endId, beamWidth, maxSequenceLength, decoderBufferManager);
}
// Speculative execution
if (!decoderState.getSpeculativeDecodingMode().isNone())
{
TLLM_CHECK(beamWidth == 1);
if (modelConfig.getSpeculativeDecodingMode().isLookaheadDecoding())
{
lookaheadPrompt.emplace_back(requestIds);
auto const& lookaheadRuntimeConfig
= llmReq->getLookaheadConfig().value_or(decodingConfig.getLookaheadDecodingConfig().value());
lookaheadAlgoConfigs.emplace_back(lookaheadRuntimeConfig);
}
newRequestSpeculativeDecoding(decoderState.getJointDecodingInput(), decoderState.getJointDecodingOutput(),
batchSlot, *llmReq, decoderState.getSpeculativeDecodingMode(), numDecodingEngineTokens,
decoderState.getMaxDecodingEngineTokens(), medusaBuffers, modelConfig, worldConfig, decodingConfig,
mSpeculativeDecodingFastLogits, mIsLeaderInOrchMode, runtimeStream, decoderStream);
}
inputOffset += promptLen;
}
return {std::move(lookaheadPrompt), std::move(lookaheadAlgoConfigs)};
}
} // namespace tensorrt_llm::batch_manager