TensorRT-LLMs/cpp/tensorrt_llm/pybind/executor/bindings.cpp
Simeng Liu f21e2b3329
[TRTLLM-9601][feat] Expose mmKeys for multimodal to integrate with dynamo. (#9604)
Signed-off-by: SimengLiu-nv <simengl@nvidia.com>
2025-12-15 08:42:30 +08:00

281 lines
15 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bindings.h"
#include "executor.h"
#include "executorConfig.h"
#include "request.h"
#include "tensorrt_llm/executor/executor.h"
#include "tensorrt_llm/executor/types.h"
#include <pybind11/cast.h>
#include <pybind11/chrono.h>
#include <pybind11/functional.h>
#include <pybind11/operators.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <optional>
namespace py = pybind11;
namespace tle = tensorrt_llm::executor;
using SizeType32 = tle::SizeType32;
namespace tensorrt_llm::pybind::executor
{
template <typename T>
void instantiateEventDiff(pybind11::module& m, std::string const& name)
{
py::class_<tle::KVCacheEventDiff<T>>(m, ("KVCacheEventDiff" + name).c_str())
.def_readonly("old_value", &tle::KVCacheEventDiff<T>::oldValue)
.def_readonly("new_value", &tle::KVCacheEventDiff<T>::newValue);
}
void initBindings(pybind11::module_& m)
{
m.attr("__version__") = tle::version();
py::enum_<tle::ModelType>(m, "ModelType")
.value("DECODER_ONLY", tle::ModelType::kDECODER_ONLY)
.value("ENCODER_ONLY", tle::ModelType::kENCODER_ONLY)
.value("ENCODER_DECODER", tle::ModelType::kENCODER_DECODER);
auto decodingModeGetstate = [](tle::DecodingMode const& self) { return py::make_tuple(self.getState()); };
auto decodingModeSetstate = [](py::tuple const& state)
{
if (state.size() != 1)
{
throw std::runtime_error("Invalid state!");
}
return tle::DecodingMode(state[0].cast<tle::DecodingMode::UnderlyingType>());
};
py::class_<tle::DecodingMode>(m, "DecodingMode")
.def("Auto", &tle::DecodingMode::Auto)
.def("TopK", &tle::DecodingMode::TopK)
.def("TopP", &tle::DecodingMode::TopP)
.def("TopKTopP", &tle::DecodingMode::TopKTopP)
.def("BeamSearch", &tle::DecodingMode::BeamSearch)
.def("Medusa", &tle::DecodingMode::Medusa)
.def("Lookahead", &tle::DecodingMode::Lookahead)
.def("ExplicitDraftTokens", &tle::DecodingMode::ExplicitDraftTokens)
.def("Eagle", &tle::DecodingMode::Eagle)
.def("isAuto", &tle::DecodingMode::isAuto)
.def("isTopK", &tle::DecodingMode::isTopK)
.def("isTopP", &tle::DecodingMode::isTopP)
.def("isTopKorTopP", &tle::DecodingMode::isTopKorTopP)
.def("isTopKandTopP", &tle::DecodingMode::isTopKandTopP)
.def("isBeamSearch", &tle::DecodingMode::isBeamSearch)
.def("isMedusa", &tle::DecodingMode::isMedusa)
.def("isLookahead", &tle::DecodingMode::isLookahead)
.def("isExplicitDraftTokens", &tle::DecodingMode::isExplicitDraftTokens)
.def("isEagle", &tle::DecodingMode::isEagle)
.def("useVariableBeamWidthSearch", &tle::DecodingMode::useVariableBeamWidthSearch)
.def_property_readonly("name", &tle::DecodingMode::getName)
.def(py::pickle(decodingModeGetstate, decodingModeSetstate));
py::enum_<tle::CapacitySchedulerPolicy>(m, "CapacitySchedulerPolicy")
.value("MAX_UTILIZATION", tle::CapacitySchedulerPolicy::kMAX_UTILIZATION)
.value("GUARANTEED_NO_EVICT", tle::CapacitySchedulerPolicy::kGUARANTEED_NO_EVICT)
.value("STATIC_BATCH", tle::CapacitySchedulerPolicy::kSTATIC_BATCH);
py::enum_<tle::ContextChunkingPolicy>(m, "ContextChunkingPolicy")
.value("EQUAL_PROGRESS", tle::ContextChunkingPolicy::kEQUAL_PROGRESS)
.value("FIRST_COME_FIRST_SERVED", tle::ContextChunkingPolicy::kFIRST_COME_FIRST_SERVED);
py::enum_<tle::CommunicationType>(m, "CommunicationType").value("MPI", tle::CommunicationType::kMPI);
py::enum_<tle::CommunicationMode>(m, "CommunicationMode")
.value("LEADER", tle::CommunicationMode::kLEADER)
.value("ORCHESTRATOR", tle::CommunicationMode::kORCHESTRATOR);
py::class_<tle::KvCacheStats>(m, "KvCacheStats")
.def(py::init<>())
.def_readwrite("max_num_blocks", &tle::KvCacheStats::maxNumBlocks)
.def_readwrite("free_num_blocks", &tle::KvCacheStats::freeNumBlocks)
.def_readwrite("used_num_blocks", &tle::KvCacheStats::usedNumBlocks)
.def_readwrite("tokens_per_block", &tle::KvCacheStats::tokensPerBlock)
.def_readwrite("alloc_total_blocks", &tle::KvCacheStats::allocTotalBlocks)
.def_readwrite("alloc_new_blocks", &tle::KvCacheStats::allocNewBlocks)
.def_readwrite("reused_blocks", &tle::KvCacheStats::reusedBlocks)
.def_readwrite("missed_blocks", &tle::KvCacheStats::missedBlocks)
.def_readwrite("cache_hit_rate", &tle::KvCacheStats::cacheHitRate);
py::class_<tle::StaticBatchingStats>(m, "StaticBatchingStats")
.def(py::init<>())
.def_readwrite("num_scheduled_requests", &tle::StaticBatchingStats::numScheduledRequests)
.def_readwrite("num_context_requests", &tle::StaticBatchingStats::numContextRequests)
.def_readwrite("num_ctx_tokens", &tle::StaticBatchingStats::numCtxTokens)
.def_readwrite("num_gen_tokens", &tle::StaticBatchingStats::numGenTokens)
.def_readwrite("empty_gen_slots", &tle::StaticBatchingStats::emptyGenSlots);
py::class_<tle::InflightBatchingStats>(m, "InflightBatchingStats")
.def(py::init<>())
.def_readwrite("num_scheduled_requests", &tle::InflightBatchingStats::numScheduledRequests)
.def_readwrite("num_context_requests", &tle::InflightBatchingStats::numContextRequests)
.def_readwrite("num_gen_requests", &tle::InflightBatchingStats::numGenRequests)
.def_readwrite("num_paused_requests", &tle::InflightBatchingStats::numPausedRequests)
.def_readwrite("num_ctx_tokens", &tle::InflightBatchingStats::numCtxTokens)
.def_readwrite("micro_batch_id", &tle::InflightBatchingStats::microBatchId)
.def_readwrite("avg_num_decoded_tokens_per_iter", &tle::InflightBatchingStats::avgNumDecodedTokensPerIter);
py::class_<tle::SpecDecodingStats>(m, "SpecDecodingStats")
.def(py::init<>())
.def_readwrite("num_draft_tokens", &tle::SpecDecodingStats::numDraftTokens)
.def_readwrite("num_accepted_tokens", &tle::SpecDecodingStats::numAcceptedTokens)
.def_readwrite("num_requests_with_draft_tokens", &tle::SpecDecodingStats::numRequestsWithDraftTokens)
.def_readwrite("acceptance_length", &tle::SpecDecodingStats::acceptanceLength)
.def_readwrite("iter_latency_ms", &tle::SpecDecodingStats::iterLatencyMS)
.def_readwrite("draft_overhead", &tle::SpecDecodingStats::draftOverhead);
py::class_<tle::IterationStats>(m, "IterationStats")
.def(py::init<>())
.def_readwrite("timestamp", &tle::IterationStats::timestamp)
.def_readwrite("iter", &tle::IterationStats::iter)
.def_readwrite("iter_latency_ms", &tle::IterationStats::iterLatencyMS)
.def_readwrite("new_active_requests_queue_latency_ms", &tle::IterationStats::newActiveRequestsQueueLatencyMS)
.def_readwrite("num_new_active_requests", &tle::IterationStats::numNewActiveRequests)
.def_readwrite("num_active_requests", &tle::IterationStats::numActiveRequests)
.def_readwrite("num_queued_requests", &tle::IterationStats::numQueuedRequests)
.def_readwrite("num_completed_requests", &tle::IterationStats::numCompletedRequests)
.def_readwrite("max_num_active_requests", &tle::IterationStats::maxNumActiveRequests)
.def_readwrite("gpu_mem_usage", &tle::IterationStats::gpuMemUsage)
.def_readwrite("cpu_mem_usage", &tle::IterationStats::cpuMemUsage)
.def_readwrite("pinned_mem_usage", &tle::IterationStats::pinnedMemUsage)
.def_readwrite("kv_cache_stats", &tle::IterationStats::kvCacheStats)
.def_readwrite("cross_kv_cache_stats", &tle::IterationStats::crossKvCacheStats)
.def_readwrite("static_batching_stats", &tle::IterationStats::staticBatchingStats)
.def_readwrite("inflight_batching_stats", &tle::IterationStats::inflightBatchingStats)
.def_readwrite("specdec_stats", &tle::IterationStats::specDecodingStats)
.def("to_json_str",
[](tle::IterationStats const& iterationStats)
{ return tle::JsonSerialization::toJsonStr(iterationStats); });
py::class_<tle::DebugTensorsPerIteration>(m, "DebugTensorsPerIteration")
.def(py::init<>())
.def_readwrite("iter", &tle::DebugTensorsPerIteration::iter)
.def_readwrite("debug_tensors", &tle::DebugTensorsPerIteration::debugTensors);
py::enum_<tle::RequestStage>(m, "RequestStage")
.value("QUEUED", tle::RequestStage::kQUEUED)
.value("ENCODER_IN_PROGRESS", tle::RequestStage::kENCODER_IN_PROGRESS)
.value("CONTEXT_IN_PROGRESS", tle::RequestStage::kCONTEXT_IN_PROGRESS)
.value("GENERATION_IN_PROGRESS", tle::RequestStage::kGENERATION_IN_PROGRESS)
.value("GENERATION_COMPLETE", tle::RequestStage::kGENERATION_COMPLETE);
py::class_<tle::DisServingRequestStats>(m, "DisServingRequestStats")
.def(py::init<>())
.def_readwrite("kv_cache_transfer_ms", &tle::DisServingRequestStats::kvCacheTransferMS)
.def_readwrite("kv_cache_size", &tle::DisServingRequestStats::kvCacheSize);
py::class_<tle::RequestStats>(m, "RequestStats")
.def(py::init<>())
.def_readwrite("id", &tle::RequestStats::id)
.def_readwrite("stage", &tle::RequestStats::stage)
.def_readwrite("context_prefill_position", &tle::RequestStats::contextPrefillPosition)
.def_readwrite("num_generated_tokens", &tle::RequestStats::numGeneratedTokens)
.def_readwrite("avg_num_decoded_tokens_per_iter", &tle::RequestStats::avgNumDecodedTokensPerIter)
.def_readwrite("scheduled", &tle::RequestStats::scheduled)
.def_readwrite("paused", &tle::RequestStats::paused)
.def_readwrite("dis_serving_stats", &tle::RequestStats::disServingStats)
.def_readwrite("alloc_total_blocks_per_request", &tle::RequestStats::allocTotalBlocksPerRequest)
.def_readwrite("alloc_new_blocks_per_request", &tle::RequestStats::allocNewBlocksPerRequest)
.def_readwrite("reused_blocks_per_request", &tle::RequestStats::reusedBlocksPerRequest)
.def_readwrite("missed_blocks_per_request", &tle::RequestStats::missedBlocksPerRequest)
.def_readwrite("kv_cache_hit_rate_per_request", &tle::RequestStats::kvCacheHitRatePerRequest)
.def("to_json_str",
[](tle::RequestStats const& iterationStats) { return tle::JsonSerialization::toJsonStr(iterationStats); });
py::class_<tle::RequestStatsPerIteration>(m, "RequestStatsPerIteration")
.def(py::init<>())
.def_readwrite("iter", &tle::RequestStatsPerIteration::iter)
.def_readwrite("request_stats", &tle::RequestStatsPerIteration::requestStats)
.def("to_json_str",
[](tle::RequestStatsPerIteration const& iterationStats)
{ return tle::JsonSerialization::toJsonStr(iterationStats); });
py::module_ executor_kv_cache = m.def_submodule("kv_cache", "Executor KV Cache Manager");
py::class_<tle::KVCacheCreatedData>(executor_kv_cache, "KVCacheCreatedData")
.def_readonly("num_blocks_per_cache_level", &tle::KVCacheCreatedData::numBlocksPerCacheLevel);
py::class_<tensorrt_llm::runtime::UniqueToken>(executor_kv_cache, "UniqueToken")
.def_readonly("token_id", &tensorrt_llm::runtime::UniqueToken::tokenId)
.def_readonly("token_extra_id", &tensorrt_llm::runtime::UniqueToken::tokenExtraId);
py::class_<tle::KVCacheStoredBlockData>(executor_kv_cache, "KVCacheStoredBlockData")
.def_readonly("block_hash", &tle::KVCacheStoredBlockData::blockHash)
.def_readonly("tokens", &tle::KVCacheStoredBlockData::tokens)
.def_readonly("lora_id", &tle::KVCacheStoredBlockData::loraId)
.def_readonly("cache_level", &tle::KVCacheStoredBlockData::cacheLevel)
.def_readonly("priority", &tle::KVCacheStoredBlockData::priority)
.def_property_readonly("mm_keys",
[](tle::KVCacheStoredBlockData const& self)
{
// Convert std::vector<MmKey> to Python list of tuples (bytes, int)
// MmKey = std::pair<std::array<uint8_t, 32>, SizeType32>
py::list result;
for (auto const& mmKey : self.mmKeys)
{
auto const& hashArray = mmKey.first;
auto offset = mmKey.second;
py::bytes hashBytes(reinterpret_cast<char const*>(hashArray.data()), hashArray.size());
result.append(py::make_tuple(hashBytes, offset));
}
return result;
});
py::class_<tle::KVCacheStoredData>(executor_kv_cache, "KVCacheStoredData")
.def_readonly("parent_hash", &tle::KVCacheStoredData::parentHash)
.def_readonly("blocks", &tle::KVCacheStoredData::blocks);
py::class_<tle::KVCacheRemovedData>(executor_kv_cache, "KVCacheRemovedData")
.def_readonly("block_hashes", &tle::KVCacheRemovedData::blockHashes);
instantiateEventDiff<SizeType32>(executor_kv_cache, "Int");
py::class_<tle::KVCacheUpdatedData>(executor_kv_cache, "KVCacheUpdatedData")
.def_readonly("block_hash", &tle::KVCacheUpdatedData::blockHash)
.def_readonly("cache_level", &tle::KVCacheUpdatedData::cacheLevel)
.def_readonly("priority", &tle::KVCacheUpdatedData::priority);
py::class_<tle::KVCacheEvent>(executor_kv_cache, "KVCacheEvent")
.def_readonly("event_id", &tle::KVCacheEvent::eventId)
.def_readonly("data", &tle::KVCacheEvent::data)
.def_readonly("window_size", &tle::KVCacheEvent::windowSize)
.def_readonly("attention_dp_rank", &tle::KVCacheEvent::attentionDpRank);
py::class_<tle::KVCacheEventManager, std::shared_ptr<tle::KVCacheEventManager>>(
executor_kv_cache, "KVCacheEventManager")
.def(
"get_latest_events",
[](tle::KVCacheEventManager& self, std::optional<double> timeout_ms = std::nullopt)
{
if (timeout_ms)
{
return self.getLatestEvents(std::chrono::milliseconds(static_cast<int64_t>(*timeout_ms)));
}
return self.getLatestEvents(std::nullopt);
},
py::arg("timeout_ms") = std::nullopt);
tensorrt_llm::pybind::executor::initRequestBindings(m);
tensorrt_llm::pybind::executor::initConfigBindings(m);
tensorrt_llm::pybind::executor::Executor::initBindings(m);
}
} // namespace tensorrt_llm::pybind::executor