TensorRT-LLMs/tests/integration/defs/examples/test_mixtral.py
xinhe-nv 263c6c0ad0
test: skip post blackwell (#6357)
Signed-off-by: Xin He (SW-GPU) <200704525+xinhe-nv@users.noreply.github.com>
2025-08-01 13:10:14 -04:00

336 lines
12 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import os
import pytest
from defs.common import (convert_weights, generate_summary_cmd, quantize_data,
venv_check_call, venv_mpi_check_call)
from defs.conftest import (get_sm_version, llm_models_root, skip_post_blackwell,
skip_pre_ada)
from defs.trt_test_alternative import check_call
# skip trt flow cases on post-Blackwell-Ultra
if get_sm_version() >= 103:
pytest.skip(
"TRT workflow tests are not supported on post Blackwell-Ultra architecture",
allow_module_level=True)
@skip_post_blackwell
@pytest.mark.parametrize("model_name", ['mixtral-8x7b-v0.1-AWQ'])
def test_llm_mixtral_int4_awq_1gpu_summary(llama_example_root,
llm_datasets_root, model_name,
llm_rouge_root, llm_venv, cmodel_dir,
engine_dir,
qcache_dir_without_install_package):
models_root = llm_models_root()
model_dir = os.path.join(models_root, model_name)
ckpt_dir = os.path.join(cmodel_dir, model_name)
print("Convert checkpoint...")
convert_cmd = [
f"{llama_example_root}/convert_checkpoint.py",
"--model_dir",
model_dir,
"--output_dir",
ckpt_dir,
]
venv_check_call(llm_venv, convert_cmd)
print("Build engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run inference")
summary_cmd = generate_summary_cmd(llama_example_root,
hf_model_dir=model_dir,
data_type="fp16",
tensorrt_llm_rouge1_threshold=19.5,
engine_dir=engine_dir,
dataset_dir=llm_datasets_root,
rouge_dir=llm_rouge_root)
venv_check_call(llm_venv, summary_cmd)
@pytest.mark.skip_less_device(8)
@pytest.mark.skip_less_device_memory(80000)
@pytest.mark.parametrize("test_type", ['build', 'infer'])
@pytest.mark.parametrize(
"moe_tp_size", [1, 4, 8],
ids=['expert_parallel', 'mixed_parallel', 'tensor_parallel'])
@pytest.mark.parametrize("moe_renorm_mode", [0, 1],
ids=['no_renormalize', 'renormalize'])
@pytest.mark.parametrize("mode", [0, 1], ids=['plugin', 'ootb_except_mha'])
@pytest.mark.parametrize("llm_mixtral_model_root",
['Mixtral-8x7B-v0.1', 'Mixtral-8x22B-v0.1'],
indirect=True)
def test_llm_mixtral_2nodes_8gpus(llama_example_root, llm_mixtral_model_root,
llm_datasets_root, llm_rouge_root, llm_venv,
cmodel_dir, engine_dir, moe_tp_size,
moe_renorm_mode, mode, test_type):
"Run test on 2x8 gpus with moe_renorm_mode"
data_type = "float16"
tp_size, pp_size = 8, 2
world_size = tp_size * pp_size
model_name = os.path.basename(llm_mixtral_model_root)
engine_dir = os.path.join(llama_example_root, "engines", model_name,
data_type, f"{world_size}-gpu",
f"tp{tp_size}pp{pp_size}moe{moe_tp_size}",
f"renorm_{moe_renorm_mode}", f"mode_{mode}")
if test_type == "build":
model_dir = convert_weights(llm_venv=llm_venv,
example_root=llama_example_root,
cmodel_dir=cmodel_dir,
model="mixtral",
model_path=llm_mixtral_model_root,
tp_size=tp_size,
moe_tp_size=moe_tp_size,
moe_ep_size=tp_size // moe_tp_size,
pp_size=pp_size,
data_type=data_type,
moe_renorm_mode=moe_renorm_mode)
gemm_plugin = "disable" if mode == "ootb-except-mha" else data_type
moe_plugin = "disable" if mode == "ootb-except-mha" else data_type
print("Build engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
f"--gemm_plugin={gemm_plugin}",
f"--moe_plugin={moe_plugin}",
f"--workers={8}",
"--max_input_len=1024",
"--max_batch_size=1",
"--context_fmha=enable",
"--max_beam_width=4",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
if test_type == "infer":
print("Run summarize...")
summary_cmd = generate_summary_cmd(llama_example_root,
hf_model_dir=llm_mixtral_model_root,
data_type="fp16",
num_beams=4,
engine_dir=engine_dir,
tensorrt_llm_rouge1_threshold=23,
dataset_dir=llm_datasets_root,
rouge_dir=llm_rouge_root)
venv_check_call(llm_venv, summary_cmd)
@pytest.mark.skip_less_device(4)
@pytest.mark.skip_less_device_memory(45000)
@pytest.mark.parametrize("llm_lora_model_root", ["chinese-mixtral-lora"],
indirect=True)
@pytest.mark.parametrize("llm_mixtral_model_root", ["Mixtral-8x7B-v0.1"],
indirect=True)
def test_llm_mixtral_moe_plugin_lora_4gpus(
llama_example_root,
llm_mixtral_model_root,
llm_venv,
cmodel_dir,
engine_dir,
llm_lora_model_root,
):
"run Mixtral MoE lora test on 4 gpu."
print("Build engines...")
dtype = 'float16'
model_name = os.path.basename(llm_mixtral_model_root)
ckpt_dir = convert_weights(llm_venv=llm_venv,
example_root=llama_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
tp_size=4,
pp_size=1,
model_path=llm_mixtral_model_root,
data_type=dtype)
print("Build engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
"--lora_plugin=auto",
"--moe_plugin=auto",
f"--lora_dir={llm_lora_model_root}",
"--worker=4",
"--max_batch_size=8",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
ref_1 = [
1, 28705, 29242, 30731, 31182, 235, 158, 142, 234, 182, 152, 28924,
29926, 28971, 29242, 28988
]
ref_2 = [
1, 315, 2016, 285, 4284, 526, 5680, 28723, 28705, 28740, 28723, 661
]
input_text = "我爱吃蛋糕"
print("Run inference with lora id 0...")
run_cmd = [
f"{llama_example_root}/../../../run.py",
"--max_output_len=5",
f"--input_text={input_text}",
"--lora_task_uids=0",
f"--tokenizer_dir={llm_lora_model_root}",
f"--engine_dir={engine_dir}",
f"--output_csv={llm_venv.get_working_directory()}/use_lora.csv",
"--use_py_session",
]
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "4", "--allow-run-as-root"],
run_cmd)
with open(f"{llm_venv.get_working_directory()}/use_lora.csv") as f:
predict = csv.reader(f)
predict = next(predict)
predict = [int(p) for p in predict]
assert ref_1 == predict
print("Run inference with lora id -1...")
input_text = "I love french quiche"
run_cmd = [
f"{llama_example_root}/../../../run.py",
"--max_output_len=5",
f"--input_text={input_text}",
"--lora_task_uids=-1",
f"--tokenizer_dir={llm_lora_model_root}",
f"--engine_dir={engine_dir}",
f"--output_csv={llm_venv.get_working_directory()}/no_lora.csv",
"--use_py_session",
]
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "4", "--allow-run-as-root"],
run_cmd)
with open(f"{llm_venv.get_working_directory()}/no_lora.csv") as f:
predict = csv.reader(f)
predict = next(predict)
predict = [int(p) for p in predict]
assert ref_2 == predict
@skip_pre_ada
@pytest.mark.skip_less_device(4)
@pytest.mark.skip_less_device_memory(80000)
@pytest.mark.parametrize("llm_lora_model_root", ["chinese-mixtral-lora"],
indirect=True)
@pytest.mark.parametrize("llm_mixtral_model_root", ["Mixtral-8x7B-v0.1"],
indirect=True)
def test_llm_mixtral_moe_plugin_fp8_lora_4gpus(
llama_example_root,
llm_mixtral_model_root,
llm_venv,
qcache_dir,
engine_dir,
llm_lora_model_root,
):
"run Mixtral MoE lora test on 4 gpu."
print("Build engines...")
dtype = 'float16'
tp_size = 4
pp_size = 1
workers = tp_size * pp_size
print("Quantizing engine...")
model_dir = quantize_data(llm_venv,
llama_example_root,
model_dir=llm_mixtral_model_root,
dtype=dtype,
qformat="fp8",
kv_cache_dtype="fp8",
quantize_dir=qcache_dir,
tp_size=tp_size,
pp_size=pp_size)
print("Build engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--workers={workers}",
"--max_batch_size=8",
f"--output_dir={engine_dir}",
f"--lora_dir={llm_lora_model_root}",
f"--lora_plugin={dtype}",
f"--moe_plugin={dtype}",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
ref_1 = [
1, 28705, 29242, 30731, 31182, 235, 158, 142, 234, 182, 152, 28924,
29926, 28971, 29242, 28988
]
input_text = "我爱吃蛋糕"
print("Run inference with lora id 0...")
run_cmd = [
f"{llama_example_root}/../../../run.py",
"--max_output_len=5",
f"--input_text={input_text}",
"--lora_task_uids=0",
f"--tokenizer_dir={llm_lora_model_root}",
f"--engine_dir={engine_dir}",
f"--output_csv={llm_venv.get_working_directory()}/use_lora.csv",
"--use_py_session",
]
venv_mpi_check_call(llm_venv,
["mpirun", "-n", f"{workers}", "--allow-run-as-root"],
run_cmd)
with open(f"{llm_venv.get_working_directory()}/use_lora.csv") as f:
predict = csv.reader(f)
predict = next(predict)
predict = [int(p) for p in predict]
assert ref_1 == predict
ref_2 = [
1, 315, 2016, 285, 4284, 526, 5680, 28723, 315, 2016, 272, 1439, 469,
28725
]
print("Run inference with lora id -1...")
input_text = "I love french quiche. I"
run_cmd = [
f"{llama_example_root}/../../../run.py",
"--max_output_len=5",
f"--input_text={input_text}",
"--lora_task_uids=-1",
f"--tokenizer_dir={llm_lora_model_root}",
f"--engine_dir={engine_dir}",
f"--output_csv={llm_venv.get_working_directory()}/no_lora.csv",
"--use_py_session",
]
venv_mpi_check_call(llm_venv,
["mpirun", "-n", f"{workers}", "--allow-run-as-root"],
run_cmd)
with open(f"{llm_venv.get_working_directory()}/no_lora.csv") as f:
predict = csv.reader(f)
predict = next(predict)
predict = [int(p) for p in predict]
assert ref_2 == predict