TensorRT-LLMs/tests/quantization/test_quant.py
2023-09-20 00:29:41 -07:00

126 lines
5.1 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from tensorrt_llm.layers import ColumnLinear, RowLinear
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import (GPTLMHeadModel, smooth_quantize,
weight_only_quantize)
from tensorrt_llm.quantization import QuantMode
from tensorrt_llm.quantization.layers import (SmoothQuantAttention,
SmoothQuantLayerNorm,
SmoothQuantMLP,
WeightOnlyQuantColumnLinear,
WeightOnlyQuantRowLinear)
class TestQuant(unittest.TestCase):
def test_weight_only_quant(self):
mode = QuantMode.use_weight_only()
model = GPTLMHeadModel(num_layers=2,
num_heads=12,
hidden_size=768,
vocab_size=51200,
hidden_act='relu',
max_position_embeddings=1024,
dtype='float16')
quant_model = weight_only_quantize(model, mode)
self.assertTrue(hasattr(quant_model, 'quant_mode'))
self.assertTrue(
isinstance(quant_model.layers[0].attention.qkv,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.layers[0].attention.dense,
WeightOnlyQuantRowLinear))
self.assertTrue(
isinstance(quant_model.layers[0].mlp.fc,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.layers[0].mlp.proj,
WeightOnlyQuantRowLinear))
self.assertTrue(
isinstance(quant_model.layers[1].attention.qkv,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.layers[1].attention.dense,
WeightOnlyQuantRowLinear))
self.assertTrue(
isinstance(quant_model.layers[1].mlp.fc,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.layers[1].mlp.proj,
WeightOnlyQuantRowLinear))
self.assertTrue(isinstance(quant_model.lm_head, ColumnLinear))
def test_weight_only_quant_exclude_modules(self):
mode = QuantMode.use_weight_only()
model = GPTLMHeadModel(num_layers=1,
num_heads=12,
hidden_size=768,
vocab_size=51200,
hidden_act='relu',
max_position_embeddings=1024,
dtype='float16')
quant_model = weight_only_quantize(model,
mode,
exclude_modules=['fc', 'dense'])
self.assertTrue(hasattr(quant_model, 'quant_mode'))
self.assertTrue(
isinstance(quant_model.layers[0].attention.qkv,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.layers[0].attention.dense, RowLinear))
self.assertTrue(isinstance(quant_model.layers[0].mlp.fc, ColumnLinear))
self.assertTrue(
isinstance(quant_model.layers[0].mlp.proj,
WeightOnlyQuantRowLinear))
self.assertTrue(
isinstance(quant_model.lm_head, WeightOnlyQuantColumnLinear))
def test_convert_GPT_to_smooth_quant(self):
gpt = GPTLMHeadModel(num_layers=1,
num_heads=1,
hidden_size=128,
vocab_size=1024,
hidden_act='gelu',
max_position_embeddings=256,
dtype='float16',
mapping=Mapping(world_size=1, rank=0, tp_size=1))
quant_mode = QuantMode.use_smooth_quant()
sq_gpt = smooth_quantize(gpt, quant_mode)
for layer in sq_gpt.layers:
assert isinstance(layer.input_layernorm, SmoothQuantLayerNorm)
assert isinstance(layer.post_layernorm, SmoothQuantLayerNorm)
assert isinstance(layer.mlp, SmoothQuantMLP)
assert isinstance(layer.attention, SmoothQuantAttention)
assert sq_gpt.quant_mode == quant_mode
if __name__ == '__main__':
unittest.main()