mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
Revert "feat: Low Precision Allreduce for PCIe based GPU (#3851)"
This reverts commit 5e634dd1bd.
157 lines
5.1 KiB
C++
157 lines
5.1 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <NvInferRuntime.h>
|
|
#include <cuda_bf16.h>
|
|
#include <cuda_fp16.h>
|
|
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
|
|
namespace tensorrt_llm::kernels
|
|
{
|
|
|
|
constexpr size_t WARP_SIZE = 32;
|
|
constexpr size_t MAX_ALL_REDUCE_BLOCKS = 24;
|
|
constexpr size_t MAX_RANKS_PER_NODE = 16;
|
|
constexpr size_t DEFAULT_BLOCK_SIZE = 512;
|
|
|
|
namespace reduce_fusion::details
|
|
{
|
|
static constexpr int kBytesPerAccess = 16;
|
|
static constexpr int kWarpSize = 32;
|
|
static constexpr int kMaxCtaSize = 1024;
|
|
static constexpr int kClusterMaxSize = 8;
|
|
static constexpr int kLamportTokenNumThreshold = 16;
|
|
static constexpr int kLamportHiddenSizeThreshold = 256;
|
|
}; // namespace reduce_fusion::details
|
|
|
|
// Warning: python definition is in tensorrt_llm/functional.py
|
|
// they must be kept in sync
|
|
enum class AllReduceStrategyType : int8_t
|
|
{
|
|
NCCL = 0,
|
|
MIN_LATENCY = 1,
|
|
UB = 2,
|
|
AUTO = 3,
|
|
ONESHOT = 4,
|
|
TWOSHOT = 5,
|
|
};
|
|
|
|
enum class AllReduceStrategyConfig : int8_t
|
|
{
|
|
USE_MEMCPY = 1 << 0,
|
|
PUSH_MODE = 1 << 1,
|
|
};
|
|
|
|
enum class AllReduceFusionOp : int8_t
|
|
{
|
|
NONE = 0,
|
|
RESIDUAL_RMS_NORM = 1,
|
|
LAST_PROCESS_FOR_UB = 2,
|
|
RESIDUAL_RMS_PREPOST_NORM = 3,
|
|
RESIDUAL_RMS_NORM_QUANT_FP8 = 4,
|
|
RESIDUAL_RMS_NORM_QUANT_NVFP4 = 5,
|
|
RESIDUAL_RMS_NORM_OUT_QUANT_FP8 = 6,
|
|
RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4 = 7,
|
|
MOE_ALLREDUCE_RESIDUAL_RMS_NORM = 8,
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, AllReduceFusionOp op)
|
|
{
|
|
switch (op)
|
|
{
|
|
case AllReduceFusionOp::NONE: os << "NONE"; break;
|
|
case AllReduceFusionOp::RESIDUAL_RMS_NORM: os << "RESIDUAL_RMS_NORM"; break;
|
|
case AllReduceFusionOp::LAST_PROCESS_FOR_UB: os << "LAST_PROCESS_FOR_UB"; break;
|
|
case AllReduceFusionOp::RESIDUAL_RMS_PREPOST_NORM: os << "RESIDUAL_RMS_PREPOST_NORM"; break;
|
|
case AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_FP8: os << "RESIDUAL_RMS_NORM_QUANT_FP8"; break;
|
|
case AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_NVFP4: os << "RESIDUAL_RMS_NORM_QUANT_NVFP4"; break;
|
|
case AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_FP8: os << "RESIDUAL_RMS_NORM_OUT_QUANT_FP8"; break;
|
|
case AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4: os << "RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4"; break;
|
|
case AllReduceFusionOp::MOE_ALLREDUCE_RESIDUAL_RMS_NORM: os << "MOE_ALLREDUCE_RESIDUAL_RMS_NORM"; break;
|
|
default: os << "UNKNOWN"; break;
|
|
}
|
|
return os;
|
|
}
|
|
|
|
inline std::string toString(AllReduceFusionOp op)
|
|
{
|
|
std::ostringstream oss;
|
|
oss << op;
|
|
return oss.str();
|
|
}
|
|
|
|
struct AllReduceFusionParams
|
|
{
|
|
AllReduceFusionParams()
|
|
: bias_buffer(nullptr)
|
|
, residual_buffer(nullptr)
|
|
, weight_buffer(nullptr)
|
|
, weight_buffer_pre_residual_norm(nullptr)
|
|
, intermediate_buffer(nullptr)
|
|
{
|
|
}
|
|
|
|
// gemm bias
|
|
void const* bias_buffer;
|
|
// residuial add
|
|
void const* residual_buffer;
|
|
// rms norm
|
|
int hidden_size; // equal to normalized_shape
|
|
void const* weight_buffer; // norm elem-wise affine gamma
|
|
void const* weight_buffer_pre_residual_norm; // for gemma norm before residual
|
|
float eps;
|
|
// new residual
|
|
void* intermediate_buffer;
|
|
void* lamport_peer_comm_buffer_ptrs[MAX_RANKS_PER_NODE * 3];
|
|
};
|
|
|
|
struct AllReduceParams
|
|
{
|
|
size_t elts_total;
|
|
size_t elts_per_rank;
|
|
size_t elts_per_block;
|
|
size_t rank_offset;
|
|
size_t ranks_per_node;
|
|
size_t local_rank;
|
|
uint32_t barrier_flag;
|
|
uint32_t* peer_barrier_ptrs_in[MAX_RANKS_PER_NODE];
|
|
uint32_t* peer_barrier_ptrs_out[MAX_RANKS_PER_NODE];
|
|
void* peer_comm_buffer_ptrs[MAX_RANKS_PER_NODE];
|
|
void* local_output_buffer_ptr;
|
|
void const* local_input_buffer_ptr;
|
|
|
|
AllReduceFusionParams fusion_params;
|
|
|
|
static AllReduceParams deserialize(int64_t* buffer, size_t tpSize, size_t tpRank, nvinfer1::DataType dataType,
|
|
int token_num, int hidden_size, AllReduceFusionOp op);
|
|
};
|
|
|
|
bool configurationSupported(AllReduceStrategyType algo, size_t msg_size, size_t n_ranks, nvinfer1::DataType type);
|
|
|
|
void customAllReduce(kernels::AllReduceParams& params, nvinfer1::DataType dataType, AllReduceStrategyType strat,
|
|
AllReduceStrategyConfig config, AllReduceFusionOp fusionOp, cudaStream_t stream);
|
|
|
|
void residualRmsNorm(
|
|
kernels::AllReduceParams& params, nvinfer1::DataType dataType, cudaStream_t stream, AllReduceFusionOp fusionOp);
|
|
|
|
void lamportInitialize(void* buffer, size_t size, nvinfer1::DataType dataType, cudaStream_t stream);
|
|
|
|
} // namespace tensorrt_llm::kernels
|