TensorRT-LLMs/tensorrt_llm/executor/rpc_proxy.py
QI JUN 4a8ac8dd62
[TRTLLM-8480][chore] clean create_py_executor API (#8412)
Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>
2025-10-17 23:52:02 -04:00

373 lines
14 KiB
Python

import asyncio
import atexit
import json
import os
import threading
from typing import Optional
from ..llmapi.mpi_session import MpiPoolSession, MpiSession
from ..llmapi.tracer import global_tracer
from ..llmapi.utils import (AsyncQueue, _SyncQueue, logger_debug,
print_colored_debug)
from ..logger import logger
from .executor import GenerationExecutor
from .postproc_worker import PostprocWorkerConfig
from .request import GenerationRequest
from .result import GenerationResult
from .rpc import RPCClient
from .rpc_worker import RpcWorker
from .utils import (ErrorResponse, create_mpi_comm_session,
get_spawn_proxy_process_env, is_llm_response)
class GenerationExecutorRpcProxy(GenerationExecutor):
# NOTE: this is a global counter for the number of instances of this class
INSTANCE_COUNTER = 0
def __init__(
self,
worker_kwargs: dict,
model_world_size: int = 1,
mpi_session: Optional[MpiSession] = None,
*,
postproc_worker_config: Optional[PostprocWorkerConfig] = None,
is_llm_executor: Optional[bool] = None,
):
"""
Args:
worker_kwargs: kwargs for the rpc worker
model_world_size: the world size of the model
mpi_session: the mpi session to use
postproc_worker_config: the postproc worker config
is_llm_executor: whether this is an llm executor
"""
GenerationExecutorRpcProxy.INSTANCE_COUNTER += 1
self.rpc_addr = self.gen_uniq_rpc_addr()
self.rpc_client = RPCClient(self.rpc_addr)
postproc_worker_config = postproc_worker_config or PostprocWorkerConfig(
)
super().__init__(
num_postprocess_workers=postproc_worker_config.
num_postprocess_workers,
postprocess_tokenizer_dir=postproc_worker_config.
postprocess_tokenizer_dir,
is_llm_executor=is_llm_executor,
)
self._results = {}
self._create_mpi_session(model_world_size, mpi_session)
self._shutdown_event = threading.Event()
self.worker_kwargs = worker_kwargs
self.main_loop_task_obj = None
self.main_loop = None
self.launch_workers()
# Invoke model creation on the remote
# TBD: Move model creation to the mpi task, or left in RPC?
self.setup_engine_remote()
# Setup main loop after engine is ready
self.setup_mainloop()
def launch_workers(self):
logger.debug(f"Launching workers")
assert self.mpi_session is not None
self.mpi_session.submit(RpcWorker.main_task,
rpc_addr=self.rpc_addr,
**self.worker_kwargs)
async def _generic_fetch_loop_async(self, fetch_method_name: str,
handler_method, method_name: str):
"""Generic method for fetching data in a loop from RPC worker.
Args:
fetch_method_name: Name of the RPC client method to call
handler_method: The handler method to call with the fetched data
method_name: Name of the method for logging
"""
try:
fetch_method = getattr(self.rpc_client, fetch_method_name)
async for data in fetch_method().remote_streaming():
if self._shutdown_event.is_set():
return
handler_method(data)
except asyncio.CancelledError:
logger.debug(f"{method_name} task cancelled")
except Exception as e:
logger.error(f"Error in {method_name}: {e}")
raise
async def _fetch_responses_loop_async(self):
await self._generic_fetch_loop_async(
fetch_method_name="fetch_responses_loop_async",
handler_method=self.handle_responses,
method_name="_fetch_responses_loop_async")
async def _fetch_stats_loop_async(self):
await self._generic_fetch_loop_async(
fetch_method_name="fetch_stats_loop_async",
handler_method=self.handle_stats,
method_name="_fetch_stats_loop_async")
async def _fetch_kv_cache_events_loop_async(self):
await self._generic_fetch_loop_async(
fetch_method_name="fetch_kv_cache_events_loop_async",
handler_method=self.handle_kv_cache_events,
method_name="_fetch_kv_cache_events_loop_async")
def setup_mainloop(self):
async def main_loop_task():
tasks = [
self._fetch_responses_loop_async(),
self._fetch_stats_loop_async(),
self._fetch_kv_cache_events_loop_async(),
]
# Only add kv_cache_events loop if it's enabled
if self._iter_kv_events_result:
tasks.append(self._fetch_kv_cache_events_loop_async())
await asyncio.gather(*tasks)
def _run_main_loop_task():
"""Local method to run the main loop task."""
self.main_loop = asyncio.new_event_loop()
asyncio.set_event_loop(self.main_loop)
self.main_loop_task_obj = self.main_loop.create_task(
main_loop_task())
try:
self.main_loop.run_until_complete(self.main_loop_task_obj)
except asyncio.CancelledError:
pass # Task cancellation is expected during shutdown
finally:
self.main_loop.close()
self.main_loop_thread = threading.Thread(target=_run_main_loop_task,
daemon=True)
self.main_loop_thread.start()
atexit.register(self.shutdown)
def handle_responses(self, responses: list[GenerationResult]) -> bool:
async_queues = []
event_loop = None
def process_res(res: list):
for r in res:
client_id = r.client_id
nonlocal event_loop
nonlocal async_queues
if client_id not in self._results:
logger.warning(
f"Received response for unknown client_id: {client_id}")
continue
queue = self._results[client_id].queue
if isinstance(queue, _SyncQueue):
queue.put_nowait(r)
async_queues.append(queue)
# all the loops are identical
event_loop = event_loop or queue.loop
else:
queue.put(r)
if (is_llm_response(r) and r.result.is_final) or isinstance(
r, ErrorResponse):
self._results.pop(client_id)
# Handle the case where responses might not be a list of lists
if responses and not isinstance(responses[0], list):
# If responses is a flat list, wrap it
responses = [responses]
for res in responses:
global_tracer().log_instant("RPC.get")
process_res(res)
if async_queues:
_SyncQueue.notify_many(event_loop, async_queues)
def _handle_iteration_data(self, data, result_singleton, data_type: str):
"""Generic method to handle iteration data received from RPC worker.
Args:
data: Data from the RPC worker (can be dict, str, or list)
result_singleton: The iteration result singleton to put data into
data_type: Type of data for logging (e.g., "stats", "kv_cache_events")
"""
# Make sure we have initialized the iteration results
self._maybe_initialize_iteration_results()
if not result_singleton:
logger.debug(
f"Skipping {data_type} handling while result_singleton=None")
return
# Get the queue from the result singleton
queue = result_singleton.queue
async_queues = []
# Clear old data if queue is full (similar to _iteration_result_task)
while queue.full():
queue.get()
try:
# Handle different types of data
if isinstance(data, str):
# Already JSON serialized
data_json = data
elif isinstance(data, list):
# Skip empty lists to avoid putting nothing in the queue
if not data:
logger.debug(
f"rpc_proxy.py: Skipping empty {data_type} list")
return
# Handle list of data (multiple iterations)
for item in data:
if isinstance(item, str):
item_json = item
else:
item_json = json.dumps(item)
if isinstance(queue, _SyncQueue):
queue.put_nowait(item_json)
async_queues.append(queue)
else:
queue.put(item_json)
if async_queues:
_SyncQueue.notify_many(queue.loop, async_queues)
return
else:
# Convert dict/other to JSON string as expected by IterationResult
data_json = json.dumps(data)
if isinstance(queue, _SyncQueue):
queue.put_nowait(data_json)
async_queues.append(queue)
else:
queue.put(data_json)
if async_queues:
_SyncQueue.notify_many(queue.loop, async_queues)
except AsyncQueue.EventLoopShutdownError:
# This happens when the event loop is already closed
logger.debug(
f"rpc_proxy.py: EventLoopShutdownError in handle_{data_type}")
except Exception as e:
logger.error(f"rpc_proxy.py: Error in handle_{data_type}: {e}")
raise e
def handle_stats(self, stats):
"""Handle stats received from RPC worker and put them into the stats result queue.
Args:
stats: Statistics data from the RPC worker (can be dict, str, or list)
"""
self._handle_iteration_data(stats, self._iter_stats_result, "stats")
def handle_kv_cache_events(self, events):
"""Handle KV cache events received from RPC worker and put them into the events result queue.
Args:
events: KV cache events data from the RPC worker (can be dict, str, or list)
"""
self._handle_iteration_data(events, self._iter_kv_events_result,
"kv_cache_events")
def submit(self, request: GenerationRequest) -> GenerationResult:
request.set_id(self._get_next_client_id())
logprob_params = self._get_logprob_params(request)
# submit is a fire-and-forget operation, don't need to wait for response
self.rpc_client.submit(request).remote(need_response=False)
result = GenerationResult(
request,
background_error_handler=self._handle_background_error,
executor=self,
disaggregated_params=request.disaggregated_params,
logprob_params=logprob_params)
self._results[request.id] = result
return result
def fetch_stats_remote(self):
return self.rpc_client.fetch_stats().remote()
def setup_engine_remote(self):
return self.rpc_client.setup_engine().remote(need_response=True)
def shutdown_remote(self):
logger_debug(f"Shutting down rpc remote", color="yellow")
self.rpc_client.shutdown().remote()
def abort_request(self, request_id: int) -> None:
return self.rpc_client.abort_request(request_id).remote()
def shutdown(self):
if self._shutdown_event.is_set():
return
self._shutdown_event.set()
logger_debug(f"Shutting down GenerationExecutorRpcProxy",
color="yellow")
# 1. shutdown the rpc server (PyExecutor Rank 0 + RPC server)
self.shutdown_remote()
# 2. stop the main loop, so that no new rpc requests
if self.main_loop and self.main_loop_task_obj:
logger_debug("Cancelling main loop task.", color="yellow")
# The cancel() is thread-safe
try:
self.main_loop.call_soon_threadsafe(
self.main_loop_task_obj.cancel)
except Exception as e:
logger_debug(f"Error cancelling main loop task: {e}",
color="yellow")
self.main_loop_thread.join()
# 3. shutdown the mpi session, this should wait until all the PyExecutor
# processes are shutdown
if self.mpi_session is not None:
logger_debug(f"Shutting down mpi session", color="yellow")
self.mpi_session.shutdown()
logger_debug(f"Mpi session shutdown", color="yellow")
self.mpi_session = None
self.rpc_client.close()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.shutdown()
def _create_mpi_session(self, model_world_size: int,
mpi_session: Optional[MpiSession]):
mpi_process_pre_spawned: bool = get_spawn_proxy_process_env()
if mpi_session is None:
if mpi_process_pre_spawned:
print_colored_debug('create comm session ...\n', "yellow")
self.mpi_session = create_mpi_comm_session(model_world_size)
else:
print_colored_debug('create pool session ...\n', "yellow")
self.mpi_session = MpiPoolSession(n_workers=model_world_size)
else:
print_colored_debug('using external mpi session ...\n', "yellow")
self.mpi_session = mpi_session
@staticmethod
def gen_uniq_rpc_addr() -> str:
process_id = os.getpid()
return f"ipc:///tmp/rpc-proxy-{process_id}-{GenerationExecutorRpcProxy.INSTANCE_COUNTER}"