TensorRT-LLMs/tensorrt_llm/_torch/utils.py
Yukun He 5fa6fbd989
feat: Enhance AutoTuner inference path and code readability (#4466)
Fix AutoTuner warmup request generating.
* The current warmup phase creates one request, which is insufficient for the warmup to cover the max_num_tokens. Revise the warmup phase to a batch of requests to cover the max_num_tokens to eliminate potential fallback cases.
Refactor AutoTuner API and reduce host overhead.

Refine (min, opt, max) values of optimization profile setup for get_valid_tactics to achieve the correct canImplement definition.
* Refine cache key assembly process to reduce host overhead and simplify API.
* Fix lru_cache usage to reduce host overhead.
* Move tuning config initialization as a one-time object in tunable runner to reduce host overhead.

Improve tuning config readability.
* Use dataclass to define tuning config.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
2025-06-04 10:53:11 +08:00

239 lines
6.6 KiB
Python

import contextlib
import os
import threading
from dataclasses import dataclass
from enum import Enum
from typing import Dict, List
import torch
from tensorrt_llm._utils import TensorWrapper, convert_to_torch_tensor
from tensorrt_llm.quantization.utils import fp4_utils
is_torch_compiling_flag = False
aux_stream_name_list = ['Attention', 'MoeShared', 'MoeChunkingOverlap']
AuxStreamType = Enum(
'AuxStreamType',
aux_stream_name_list,
)
EventType = Enum(
'EventType',
['Main', *aux_stream_name_list],
start=0,
)
def set_torch_compiling(enable: bool):
global is_torch_compiling_flag
is_torch_compiling_flag = enable
def is_torch_compiling() -> bool:
global is_torch_compiling_flag
return is_torch_compiling_flag
_global_attrs = threading.local()
def get_global_attrs():
return _global_attrs
_model_extra_attrs = threading.local()
def get_model_extra_attrs():
return getattr(_model_extra_attrs, 'attrs', None)
@contextlib.contextmanager
def model_extra_attrs(attrs: Dict):
old_attrs = getattr(_model_extra_attrs, 'attrs', None)
_model_extra_attrs.attrs = attrs
try:
yield
finally:
_model_extra_attrs.attrs = old_attrs
def with_model_extra_attrs(get_attrs):
def decorator(func):
def wrapper(self, *args, **kwargs):
with model_extra_attrs(get_attrs(self)):
return func(self, *args, **kwargs)
return wrapper
return decorator
def make_weak_ref(x):
if isinstance(x, torch.Tensor):
return convert_to_torch_tensor(
TensorWrapper(x.data_ptr(), x.dtype, x.shape)) if x.is_cuda else x
elif isinstance(x, tuple):
return tuple(make_weak_ref(i) for i in x)
elif isinstance(x, list):
return [make_weak_ref(i) for i in x]
elif isinstance(x, dict):
return {k: make_weak_ref(v) for k, v in x.items()}
elif isinstance(x, (int, float, bool)):
return x
else:
raise TypeError(f"Invalid type {type(x)} to make weak ref")
@dataclass
class Fp4QuantizedTensor:
fp4_tensor: torch.Tensor
scaling_factor: torch.Tensor
@property
def shape(self):
return self.fp4_tensor.shape
_disable_fp4_allgather = os.getenv("TLLM_DISABLE_FP4_ALLGATHER", "0") == "1"
def disable_fp4_allgather():
return _disable_fp4_allgather
def compute_swizzled_sf_shape(row: int, col: int):
padded_row = (row + 128 - 1) // 128 * 128
padded_col = (col + 4 - 1) // 4 * 4
return padded_row, padded_col
def swizzle_sf(sf: torch.Tensor,
row: int,
col: int,
scaling_vector_size: int = 16):
factor = scaling_vector_size * 4
num_m_tiles = (row + 128 - 1) // 128
num_k_tiles = (col + factor - 1) // factor
# SF layout [num_m_tiles, num_k_tiles, 32 (m_tile column major), 4 (m_tile column major), 4(k_tile)]
sf_full = torch.zeros(num_m_tiles * 32 * 4,
num_k_tiles * 4,
dtype=sf.dtype,
device=sf.device)
sf_full[:row, :(col //
scaling_vector_size)] = sf[:row, :(col //
scaling_vector_size)]
sf_full_reshaped = sf_full.view(num_m_tiles, 4, 32, num_k_tiles, 4)
sf_full_swizzle = sf_full_reshaped.transpose(1, 3)
sf_swizzle = sf_full_swizzle.reshape(-1)
return sf_swizzle
def unswizzle_sf(sf: torch.Tensor,
row: int,
col: int,
scaling_vector_size: int = 16):
factor = scaling_vector_size * 4
num_m_tiles = (row + 128 - 1) // 128
num_k_tiles = (col + factor - 1) // factor
# SF layout [num_m_tiles, num_k_tiles, 32 (m_tile column major), 4 (m_tile column major), 4(k_tile)]
sf_reshaped = sf.view(num_m_tiles, num_k_tiles, 32, 4, 4)
sf_unswizzle = sf_reshaped.transpose(1, 3)
sf_unswizzle = sf_unswizzle.reshape(num_m_tiles * 32 * 4, num_k_tiles * 4)
sf_unswizzle_sliced = sf_unswizzle[:row, :(col // scaling_vector_size)]
return sf_unswizzle_sliced.contiguous()
def reswizzle_sf(sf: torch.Tensor,
row: int,
col: int,
scaling_vector_size: int = 16):
factor = scaling_vector_size * 4
num_m_tiles = (row + 128 - 1) // 128
num_k_tiles = (col + factor - 1) // factor
partition_size = num_m_tiles * num_k_tiles * 32 * 4 * 4
num_partitions = sf.numel() // partition_size
sf_reshaped = sf.view(num_partitions, num_m_tiles, num_k_tiles, 32, 4, 4)
sf_unswizzle = sf_reshaped.transpose(2, 4)
sf_unswizzle = sf_unswizzle.reshape(num_partitions, num_m_tiles * 32 * 4,
num_k_tiles * 4)
total_rows = num_partitions * row
num_m_tiles_out = (total_rows + 128 - 1) // 128
sf_out = torch.zeros(
num_m_tiles_out,
4,
32,
num_k_tiles,
4,
dtype=sf.dtype,
device=sf.device,
)
sf_out_reshaped = sf_out.view(num_m_tiles_out * 32 * 4, num_k_tiles * 4)
sf_out_reshaped[:total_rows] = sf_unswizzle[:, :row].reshape(total_rows, -1)
sf_out_swizzle = sf_out.transpose(1, 3).reshape(-1)
return sf_out_swizzle
def next_positive_power_of_2(x: int) -> int:
if x < 1:
return 1
return 1 << (x - 1).bit_length()
def last_positive_power_of_2(x: int) -> int:
next = next_positive_power_of_2(x)
if next == x:
return next
return next // 2
def nearest_in_buckets(x: int, buckets: List[int]) -> int:
return min(max(next_positive_power_of_2(x), buckets[0]), buckets[-1])
def get_power_of_2_num_tokens_buckets(max_num_tokens) -> List[int]:
max_num_tokens = next_positive_power_of_2(max_num_tokens)
num_token_buckets = []
m = max_num_tokens
while m >= 1:
num_token_buckets.append(m)
m //= 2
return tuple(num_token_buckets)
def get_last_power_of_2_num_tokens_buckets(max_num_tokens) -> List[int]:
max_num_tokens = last_positive_power_of_2(max_num_tokens)
num_token_buckets = []
m = max_num_tokens
while m >= 1:
num_token_buckets.append(m)
m //= 2
return tuple(num_token_buckets)
def fp4_scale_infer_shape(input_shapes: List[List[int]]):
"""Calculate the dimensions of the fp4 scale tensor.
"""
out_shape, scale_shape = fp4_utils.get_fp4_shape(input_shapes[0],
sf_vec_size=16)
return scale_shape * 2
_enable_piecewise_cuda_graph = True
def set_piecewise_cuda_graph_flag(enable: bool):
global _enable_piecewise_cuda_graph
_enable_piecewise_cuda_graph = enable
def get_piecewise_cuda_graph_flag() -> bool:
global _enable_piecewise_cuda_graph
return _enable_piecewise_cuda_graph