TensorRT-LLMs/benchmarks/python/allowed_configs.py
Kaiyu Xie 4bb65f216f
Update TensorRT-LLM (#1274)
* Update TensorRT-LLM

---------

Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-12 18:15:52 +08:00

1241 lines
45 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import asdict, dataclass
from typing import Dict, Optional, Union
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal
@dataclass
class BuildConfig:
num_layers: int
num_heads: int
hidden_size: int
vocab_size: int
hidden_act: Optional[str]
n_positions: int
max_batch_size: int
max_input_len: Optional[int] = None
num_kv_heads: Optional[int] = None
max_output_len: Optional[int] = None
max_beam_width: int = 1
# TRT builder_optimization_level from 0 to 5
builder_opt: Optional[int] = None
inter_size: Optional[int] = None
rotary_dim: Optional[int] = None
type_vocab_size: Optional[int] = None
pre_norm: Optional[bool] = None
do_layer_norm_before: Optional[bool] = None
enable_qk_half_accum: bool = False
enable_context_fmha: bool = True
enable_multi_block_mode: bool = False
# The enum name of PositionEmbeddingType
# None means using the model family's default value defined in the ctor
position_embedding_type: str = None
# Only when position embedding is RoPE, this value makes sense, make
# default value to be None, not the others to prevent misuse
rotary_pct: Optional[float] = None
bias: bool = True
quantization: Optional[str] = None
# use_custom_all_reduce gives better performance with NVLink
use_custom_all_reduce: bool = True
moe_num_experts: int = 0
moe_top_k: int = 0
use_alibi: bool = None
remove_input_padding: bool = None
parallel_attention: bool = None
new_decoder_architecture: bool = None
mamba_d_state: int = 0
mamba_d_conv: int = 0
mamba_expand: int = 0
@dataclass
class EncDecBuildConfig:
num_layers: int
num_heads: int
hidden_size: int
vocab_size: int
hidden_act: Optional[str]
max_batch_size: int
n_positions: int = 0
num_decoder_layers: Optional[int] = None
head_size: Optional[int] = None
ffn_hidden_size: Optional[int] = None
num_buckets: int = 0
max_distance: int = 0
has_embedding_scale: bool = False
normalize_before: Optional[bool] = None
max_encoder_input_len: Optional[int] = None
max_decoder_input_len: Optional[int] = None
max_output_len: Optional[int] = None
builder_opt: Optional[int] = None
n_mels: Optional[int] = None
skip_cross_qkv: bool = False
def __post_init__(self) -> None:
assert self.head_size is not None
assert self.ffn_hidden_size is not None
@dataclass
class ModelConfig:
name: str
family: str
benchmark_type: Literal["gpt", "bert", "enc_dec"]
build_config: BuildConfig
_allowed_configs = {
"gpt_350m":
ModelConfig(name="gpt_350m",
family="gpt",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=24,
num_heads=16,
hidden_size=1024,
vocab_size=51200,
hidden_act='gelu',
n_positions=1024,
max_batch_size=256,
max_input_len=512,
max_output_len=200,
builder_opt=None,
)),
"gpt_1.5b":
ModelConfig(name="gpt_1.5b",
family="gpt",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=48,
num_heads=25,
hidden_size=1600,
vocab_size=51200,
hidden_act='gelu',
n_positions=1024,
max_batch_size=256,
max_input_len=512,
max_output_len=200,
builder_opt=None,
)),
"gpt_175b":
ModelConfig(name="gpt_175b",
family="gpt",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=96,
num_heads=96,
hidden_size=12288,
vocab_size=51200,
hidden_act='gelu',
n_positions=2048,
max_batch_size=64,
max_input_len=512,
max_output_len=200,
builder_opt=None,
)),
"gpt_350m_moe":
ModelConfig(name="gpt_350m_moe",
family="gpt",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=24,
num_heads=16,
hidden_size=1024,
vocab_size=51200,
hidden_act='gelu',
n_positions=1024,
max_batch_size=256,
max_input_len=512,
max_output_len=200,
builder_opt=None,
moe_num_experts=8,
moe_top_k=1,
)),
"gpt_350m_sq_per_tensor":
ModelConfig(name="gpt_350m_sq_per_tensor",
family="gpt",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=24,
num_heads=16,
hidden_size=1024,
vocab_size=51200,
hidden_act='gelu',
n_positions=1024,
max_batch_size=256,
max_input_len=512,
max_output_len=200,
builder_opt=None,
quantization="int8_sq_per_tensor",
)),
"gpt_350m_sq_per_token_channel":
ModelConfig(name="gpt_350m_sq_per_token_channel",
family="gpt",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=24,
num_heads=16,
hidden_size=1024,
vocab_size=51200,
hidden_act='gelu',
n_positions=1024,
max_batch_size=256,
max_input_len=512,
max_output_len=200,
builder_opt=None,
quantization="int8_sq_per_token_channel",
)),
"gpt_next_2b":
ModelConfig(name="gpt_next_2b",
family="gpt",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=24,
num_heads=16,
hidden_size=2048,
vocab_size=256000,
hidden_act='swiglu',
n_positions=1024,
max_batch_size=256,
max_input_len=512,
max_output_len=200,
builder_opt=None,
position_embedding_type='rope_gpt_neox',
rotary_pct=0.5,
bias=False,
)),
"opt_350m":
ModelConfig(name="opt_350m",
family="opt",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=24,
num_heads=16,
hidden_size=1024,
vocab_size=50272,
hidden_act='relu',
n_positions=2048,
max_batch_size=256,
max_input_len=512,
max_output_len=200,
builder_opt=None,
pre_norm=False,
do_layer_norm_before=False,
)),
"opt_2.7b":
ModelConfig(name="opt_2.7b",
family="opt",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=32,
num_heads=32,
hidden_size=2560,
vocab_size=50272,
hidden_act='relu',
n_positions=2048,
max_batch_size=256,
max_input_len=512,
max_output_len=200,
builder_opt=None,
pre_norm=False,
do_layer_norm_before=True,
)),
"opt_6.7b":
ModelConfig(name="opt_6.7b",
family="opt",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=32,
num_heads=32,
hidden_size=4096,
vocab_size=50272,
hidden_act='relu',
n_positions=2048,
max_batch_size=256,
max_input_len=512,
max_output_len=200,
builder_opt=None,
pre_norm=False,
do_layer_norm_before=True,
)),
"opt_66b":
ModelConfig(name="opt_66b",
family="opt",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=64,
num_heads=72,
hidden_size=9216,
vocab_size=50272,
hidden_act='relu',
n_positions=2048,
max_batch_size=64,
max_input_len=512,
max_output_len=200,
builder_opt=None,
pre_norm=True,
do_layer_norm_before=True,
)),
"llama_7b":
ModelConfig(name="llama_7b",
family="llama",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=32,
num_heads=32,
hidden_size=4096,
vocab_size=32000,
hidden_act='silu',
n_positions=4096,
inter_size=11008,
max_batch_size=128,
max_input_len=512,
max_output_len=200,
builder_opt=None,
)),
"llama_13b":
ModelConfig(name="llama_13b",
family="llama",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=40,
num_heads=40,
hidden_size=5120,
vocab_size=32000,
hidden_act='silu',
n_positions=4096,
inter_size=13824,
max_batch_size=128,
max_input_len=512,
max_output_len=200,
builder_opt=None,
)),
"llama_30b":
ModelConfig(name="llama_30b",
family="llama",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=60,
num_heads=52,
hidden_size=6656,
vocab_size=32000,
hidden_act='silu',
n_positions=2048,
inter_size=17920,
max_batch_size=64,
max_input_len=512,
max_output_len=200,
builder_opt=None,
)),
"llama_70b":
ModelConfig(name="llama_70b",
family="llama",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=80,
num_heads=64,
num_kv_heads=8,
hidden_size=8192,
vocab_size=32000,
hidden_act='silu',
n_positions=4096,
inter_size=28672,
max_batch_size=64,
max_input_len=512,
max_output_len=200,
builder_opt=None,
)),
"llama_70b_long_context":
ModelConfig(name="llama_70b_long_context",
family="llama",
benchmark_type="gpt",
build_config=BuildConfig(num_layers=80,
num_heads=64,
num_kv_heads=8,
hidden_size=8192,
vocab_size=32000,
hidden_act='silu',
n_positions=4096,
inter_size=28672,
max_batch_size=16,
max_input_len=8000,
max_output_len=200,
builder_opt=None,
enable_multi_block_mode=True)),
"llama_70b_long_generation":
ModelConfig(name="llama_70b_long_generation",
family="llama",
benchmark_type="gpt",
build_config=BuildConfig(num_layers=80,
num_heads=64,
num_kv_heads=8,
hidden_size=8192,
vocab_size=32000,
hidden_act='silu',
n_positions=4096,
inter_size=28672,
max_batch_size=64,
max_input_len=200,
max_output_len=16384,
builder_opt=None,
enable_multi_block_mode=True)),
"llama_70b_sq_per_tensor":
ModelConfig(name="llama_70b_sq_per_tensor",
family="llama",
benchmark_type="gpt",
build_config=BuildConfig(num_layers=80,
num_heads=64,
num_kv_heads=8,
hidden_size=8192,
vocab_size=32000,
hidden_act='silu',
n_positions=4096,
inter_size=28672,
max_batch_size=128,
max_input_len=512,
max_output_len=200,
builder_opt=None,
quantization="int8_sq_per_tensor")),
"mixtral_8x7b":
ModelConfig(name="mixtral_8x7b",
family="llama",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=32,
num_heads=32,
hidden_size=4096,
vocab_size=32000,
hidden_act='swiglu',
n_positions=2048,
inter_size=14336,
max_batch_size=128,
max_input_len=512,
max_output_len=200,
builder_opt=None,
moe_num_experts=8,
moe_top_k=2,
)),
"gptj_6b":
ModelConfig(name="gptj_6b",
family="gptj",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=28,
num_heads=16,
hidden_size=4096,
vocab_size=50401,
hidden_act='gelu',
n_positions=1024,
rotary_dim=64,
max_batch_size=256,
max_input_len=512,
max_output_len=200,
builder_opt=None,
)),
"gptneox_20b":
ModelConfig(name="gptneox_20b",
family="gptneox",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=44,
num_heads=64,
hidden_size=6144,
vocab_size=50432,
hidden_act='gelu',
n_positions=2048,
rotary_dim=24,
max_batch_size=16,
max_input_len=512,
max_output_len=512,
builder_opt=None,
)),
"chatglm_6b":
ModelConfig(name="chatglm_6b",
family="chatglm",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=28,
num_heads=32,
num_kv_heads=32,
hidden_size=4096,
inter_size=16384,
vocab_size=130528,
hidden_act='gelu',
n_positions=2048,
max_batch_size=256,
max_input_len=512,
max_output_len=200,
builder_opt=None,
remove_input_padding=False,
)),
"chatglm2_6b":
ModelConfig(name="chatglm2_6b",
family="chatglm2",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=28,
num_heads=32,
num_kv_heads=2,
hidden_size=4096,
inter_size=13696,
vocab_size=65024,
hidden_act='swiglu',
n_positions=2048,
max_batch_size=256,
max_input_len=512,
max_output_len=200,
builder_opt=None,
remove_input_padding=False,
)),
"chatglm3_6b":
ModelConfig(name="chatglm3_6b",
family="chatglm3",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=28,
num_heads=32,
num_kv_heads=2,
hidden_size=4096,
inter_size=13696,
vocab_size=65024,
hidden_act='swiglu',
n_positions=2048,
max_batch_size=256,
max_input_len=512,
max_output_len=200,
builder_opt=None,
remove_input_padding=False,
)),
"bloom_560m":
ModelConfig(name="bloom_560m",
family="bloom",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=24,
num_heads=16,
hidden_size=1024,
vocab_size=250880,
hidden_act=None,
n_positions=2048,
max_batch_size=8,
max_input_len=1024,
max_output_len=1024,
builder_opt=None,
)),
"bloom_176b":
ModelConfig(name="bloom_176b",
family="bloom",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=70,
num_heads=112,
hidden_size=14336,
vocab_size=250880,
hidden_act=None,
n_positions=2048,
max_batch_size=8,
max_input_len=1024,
max_output_len=1024,
builder_opt=None,
)),
"bert_base":
ModelConfig(name="bert_base",
family="bert",
benchmark_type="bert",
build_config=BuildConfig(
num_layers=12,
num_heads=12,
hidden_size=768,
vocab_size=30522,
type_vocab_size=2,
hidden_act='gelu',
n_positions=1024,
max_batch_size=256,
max_input_len=512,
builder_opt=None,
enable_qk_half_accum=False,
enable_context_fmha=False,
)),
"bert_large":
ModelConfig(name="bert_large",
family="bert",
benchmark_type="bert",
build_config=BuildConfig(
num_layers=24,
num_heads=16,
hidden_size=1024,
vocab_size=30522,
type_vocab_size=2,
hidden_act='gelu',
n_positions=1024,
max_batch_size=64,
max_input_len=512,
builder_opt=None,
enable_qk_half_accum=False,
enable_context_fmha=False,
)),
"roberta_base":
ModelConfig(name="roberta_base",
family="roberta",
benchmark_type="bert",
build_config=BuildConfig(
num_layers=12,
num_heads=12,
hidden_size=768,
vocab_size=50265,
type_vocab_size=1,
hidden_act='gelu',
n_positions=1024,
max_batch_size=64,
max_input_len=512,
builder_opt=None,
enable_qk_half_accum=False,
enable_context_fmha=False,
)),
"falcon_rw_1b":
ModelConfig(name="falcon_rw_1b",
family="falcon",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=24,
num_heads=32,
hidden_size=2048,
vocab_size=50304,
hidden_act='gelu',
n_positions=2048,
max_batch_size=256,
max_input_len=1024,
max_output_len=1024,
builder_opt=None,
bias=True,
use_alibi=True,
parallel_attention=False,
new_decoder_architecture=False,
)),
"falcon_7b":
ModelConfig(name="falcon_7b",
family="falcon",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=32,
num_heads=71,
num_kv_heads=1,
hidden_size=4544,
vocab_size=65024,
hidden_act='gelu',
n_positions=2048,
max_batch_size=128,
max_input_len=512,
max_output_len=200,
builder_opt=None,
bias=False,
use_alibi=False,
parallel_attention=True,
new_decoder_architecture=False,
)),
"falcon_40b":
ModelConfig(name="falcon_40b",
family="falcon",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=60,
num_heads=128,
num_kv_heads=8,
hidden_size=8192,
vocab_size=65024,
hidden_act='gelu',
n_positions=2048,
max_batch_size=64,
max_input_len=512,
max_output_len=200,
builder_opt=None,
bias=False,
use_alibi=False,
parallel_attention=True,
new_decoder_architecture=True,
)),
"falcon_180b":
ModelConfig(name="falcon_180b",
family="falcon",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=80,
num_heads=232,
num_kv_heads=8,
hidden_size=14848,
vocab_size=65024,
hidden_act='gelu',
n_positions=2048,
max_batch_size=8,
max_input_len=1024,
max_output_len=1024,
builder_opt=None,
bias=False,
use_alibi=False,
parallel_attention=True,
new_decoder_architecture=True,
)),
"t5_small":
ModelConfig(name="t5_small",
family="t5",
benchmark_type="enc_dec",
build_config=EncDecBuildConfig(
num_layers=6,
num_heads=8,
head_size=64,
ffn_hidden_size=2048,
hidden_size=512,
vocab_size=32128,
hidden_act="relu",
n_positions=512,
num_buckets=32,
max_distance=128,
max_batch_size=8,
max_encoder_input_len=1024,
max_decoder_input_len=1,
max_output_len=200,
builder_opt=None,
)),
"t5_base":
ModelConfig(name="t5_base",
family="t5",
benchmark_type="enc_dec",
build_config=EncDecBuildConfig(
num_layers=12,
num_heads=12,
head_size=64,
ffn_hidden_size=3072,
hidden_size=768,
vocab_size=32128,
hidden_act="relu",
n_positions=512,
num_buckets=32,
max_distance=128,
max_batch_size=8,
max_encoder_input_len=1024,
max_decoder_input_len=1,
max_output_len=200,
builder_opt=None,
)),
"t5_large":
ModelConfig(name="t5_large",
family="t5",
benchmark_type="enc_dec",
build_config=EncDecBuildConfig(
num_layers=24,
num_heads=16,
head_size=64,
ffn_hidden_size=4096,
hidden_size=1024,
vocab_size=32128,
hidden_act="relu",
n_positions=512,
num_buckets=32,
max_distance=128,
max_batch_size=8,
max_encoder_input_len=1024,
max_decoder_input_len=1,
max_output_len=200,
builder_opt=None,
)),
"t5_3b":
ModelConfig(name="t5_3b",
family="t5",
benchmark_type="enc_dec",
build_config=EncDecBuildConfig(
num_layers=24,
num_heads=32,
head_size=128,
ffn_hidden_size=16384,
hidden_size=1024,
vocab_size=32128,
hidden_act="relu",
n_positions=512,
num_buckets=32,
max_distance=128,
max_batch_size=8,
max_encoder_input_len=1024,
max_decoder_input_len=1,
max_output_len=200,
builder_opt=None,
)),
"t5_11b":
ModelConfig(name="t5_11b",
family="t5",
benchmark_type="enc_dec",
build_config=EncDecBuildConfig(
num_layers=24,
num_heads=128,
head_size=128,
ffn_hidden_size=65536,
hidden_size=1024,
vocab_size=32128,
hidden_act="relu",
n_positions=512,
num_buckets=32,
max_distance=128,
max_batch_size=8,
max_encoder_input_len=1024,
max_decoder_input_len=1,
max_output_len=200,
builder_opt=None,
)),
"flan_t5_small":
ModelConfig(name="flan_t5_small",
family="flan_t5",
benchmark_type="enc_dec",
build_config=EncDecBuildConfig(
num_layers=8,
num_decoder_layers=8,
num_heads=6,
head_size=64,
ffn_hidden_size=1024,
hidden_size=512,
vocab_size=32128,
hidden_act="gelu_new",
n_positions=512,
num_buckets=32,
max_distance=128,
max_batch_size=8,
max_encoder_input_len=1024,
max_decoder_input_len=1,
max_output_len=200,
builder_opt=None,
)),
"flan_t5_base":
ModelConfig(name="flan_t5_base",
family="flan_t5",
benchmark_type="enc_dec",
build_config=EncDecBuildConfig(
num_layers=12,
num_decoder_layers=12,
num_heads=12,
head_size=64,
ffn_hidden_size=2048,
hidden_size=768,
vocab_size=32128,
hidden_act="gelu_new",
n_positions=512,
num_buckets=32,
max_distance=128,
max_batch_size=8,
max_encoder_input_len=1024,
max_decoder_input_len=1,
max_output_len=200,
builder_opt=None,
)),
"flan_t5_large":
ModelConfig(name="flan_t5_large",
family="flan_t5",
benchmark_type="enc_dec",
build_config=EncDecBuildConfig(
num_layers=24,
num_decoder_layers=24,
num_heads=16,
head_size=64,
ffn_hidden_size=2816,
hidden_size=1024,
vocab_size=32128,
hidden_act="gelu_new",
n_positions=512,
num_buckets=32,
max_distance=128,
max_batch_size=8,
max_encoder_input_len=1024,
max_decoder_input_len=1,
max_output_len=200,
builder_opt=None,
)),
"flan_t5_xl":
ModelConfig(name="flan_t5_xl",
family="flan_t5",
benchmark_type="enc_dec",
build_config=EncDecBuildConfig(
num_layers=24,
num_decoder_layers=24,
num_heads=32,
head_size=64,
ffn_hidden_size=5120,
hidden_size=2048,
vocab_size=32128,
hidden_act="gelu_new",
n_positions=512,
num_buckets=32,
max_distance=128,
max_batch_size=8,
max_encoder_input_len=1024,
max_decoder_input_len=1,
max_output_len=200,
builder_opt=None,
)),
"flan_t5_xxl":
ModelConfig(name="flan_t5_xxl",
family="flan_t5",
benchmark_type="enc_dec",
build_config=EncDecBuildConfig(
num_layers=24,
num_decoder_layers=24,
num_heads=64,
head_size=64,
ffn_hidden_size=10240,
hidden_size=4096,
vocab_size=32128,
hidden_act="gelu_new",
n_positions=0,
num_buckets=32,
max_distance=128,
max_batch_size=8,
max_encoder_input_len=1024,
max_decoder_input_len=1,
max_output_len=200,
builder_opt=None,
)),
"bart_large_cnn":
ModelConfig(name="bart_large_cnn",
family="bart",
benchmark_type="enc_dec",
build_config=EncDecBuildConfig(
num_layers=12,
num_decoder_layers=12,
num_heads=16,
head_size=64,
ffn_hidden_size=4096,
hidden_size=1024,
vocab_size=50265,
hidden_act="gelu",
n_positions=1024,
num_buckets=32,
has_embedding_scale=False,
normalize_before=False,
max_batch_size=8,
max_encoder_input_len=1024,
max_decoder_input_len=1,
max_output_len=200,
builder_opt=None,
)),
"mbart_large_50_many_to_one_mmt":
ModelConfig(name="mbart_large_50_many_to_one_mmt",
family="bart",
benchmark_type="enc_dec",
build_config=EncDecBuildConfig(
num_layers=12,
num_decoder_layers=12,
num_heads=16,
head_size=64,
ffn_hidden_size=4096,
hidden_size=1024,
vocab_size=250054,
hidden_act="relu",
n_positions=1024,
has_embedding_scale=True,
normalize_before=True,
max_batch_size=8,
max_encoder_input_len=1024,
max_decoder_input_len=1,
max_output_len=200,
builder_opt=None,
)),
"baichuan_7b":
ModelConfig(name="baichuan_7b",
family="baichuan",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=32,
num_heads=32,
hidden_size=4096,
vocab_size=64000,
hidden_act='silu',
n_positions=4096,
inter_size=11008,
max_batch_size=128,
max_input_len=512,
max_output_len=200,
builder_opt=None,
)),
"baichuan2_7b_chat":
ModelConfig(name="baichuan2_7b_chat",
family="baichuan",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=32,
num_heads=32,
hidden_size=4096,
vocab_size=125696,
hidden_act='silu',
n_positions=4096,
inter_size=11008,
max_batch_size=128,
max_input_len=512,
max_output_len=200,
builder_opt=None,
)),
"baichuan_13b_chat":
ModelConfig(name="baichuan_13b_chat",
family="baichuan",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=40,
num_heads=40,
hidden_size=5120,
vocab_size=64000,
hidden_act='silu',
n_positions=4096,
inter_size=13696,
max_batch_size=64,
max_input_len=512,
max_output_len=200,
builder_opt=None,
)),
"baichuan2_13b_chat":
ModelConfig(name="baichuan2_13b_chat",
family="baichuan",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=40,
num_heads=40,
hidden_size=5120,
vocab_size=125696,
hidden_act='silu',
n_positions=4096,
inter_size=13696,
max_batch_size=64,
max_input_len=512,
max_output_len=200,
builder_opt=None,
)),
"internlm_chat_7b":
ModelConfig(name="internlm_chat_7b",
family="internlm",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=32,
num_heads=32,
num_kv_heads=32,
hidden_size=4096,
vocab_size=103168,
hidden_act='silu',
n_positions=2048,
inter_size=11008,
max_batch_size=128,
max_input_len=512,
max_output_len=200,
builder_opt=None,
bias=True,
)),
"internlm_chat_20b":
ModelConfig(name="internlm_chat_20b",
family="internlm",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=60,
num_heads=40,
num_kv_heads=40,
hidden_size=5120,
vocab_size=103168,
hidden_act='silu',
n_positions=4096,
inter_size=13824,
max_batch_size=64,
max_input_len=512,
max_output_len=200,
builder_opt=None,
bias=False,
)),
"qwen_7b_chat":
ModelConfig(name="qwen_7b_chat",
family="qwen",
benchmark_type="gpt",
build_config=BuildConfig(num_layers=32,
num_heads=32,
hidden_size=4096,
vocab_size=151936,
hidden_act='silu',
n_positions=8192,
inter_size=22016,
max_batch_size=128,
max_input_len=512,
max_output_len=200,
builder_opt=None,
bias=False)),
"qwen_14b_chat":
ModelConfig(name="qwen_14b_chat",
family="qwen",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=40,
num_heads=40,
hidden_size=5120,
vocab_size=152064,
hidden_act='silu',
n_positions=8192,
inter_size=27392,
max_batch_size=64,
max_input_len=512,
max_output_len=200,
builder_opt=None,
)),
"mamba_2.8b":
ModelConfig(name="mamba_2.8b",
family="mamba",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=64,
num_heads=1,
hidden_size=2560,
vocab_size=50280,
hidden_act="silu",
n_positions=8192,
max_batch_size=64,
max_input_len=1024,
max_output_len=1024,
mamba_d_state=16,
mamba_d_conv=4,
mamba_expand=2,
)),
"mamba_1.4b":
ModelConfig(name="mamba_1.4b",
family="mamba",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=48,
num_heads=1,
hidden_size=2048,
vocab_size=50280,
hidden_act="silu",
n_positions=8192,
max_batch_size=64,
max_input_len=1024,
max_output_len=1024,
mamba_d_state=16,
mamba_d_conv=4,
mamba_expand=2,
)),
"mamba_790m":
ModelConfig(name="mamba_790m",
family="mamba",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=48,
num_heads=1,
hidden_size=1536,
vocab_size=50280,
hidden_act="silu",
n_positions=8192,
max_batch_size=64,
max_input_len=1024,
max_output_len=1024,
mamba_d_state=16,
mamba_d_conv=4,
mamba_expand=2,
)),
"mamba_370m":
ModelConfig(name="mamba_370m",
family="mamba",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=48,
num_heads=1,
hidden_size=1024,
vocab_size=50280,
hidden_act="silu",
n_positions=8192,
max_batch_size=64,
max_input_len=1024,
max_output_len=1024,
mamba_d_state=16,
mamba_d_conv=4,
mamba_expand=2,
)),
"mamba_130m":
ModelConfig(name="mamba_130m",
family="mamba",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=24,
num_heads=1,
hidden_size=768,
vocab_size=50280,
hidden_act="silu",
n_positions=8192,
max_batch_size=64,
max_input_len=1024,
max_output_len=1024,
mamba_d_state=16,
mamba_d_conv=4,
mamba_expand=2,
)),
"whisper_large_v3":
ModelConfig(name="whisper_large_v3",
family="whisper",
benchmark_type="enc_dec",
build_config=EncDecBuildConfig(
num_layers=32,
num_decoder_layers=32,
num_heads=20,
head_size=64,
ffn_hidden_size=5120,
hidden_size=1280,
vocab_size=51866,
hidden_act="gelu",
n_positions=448,
n_mels=128,
max_batch_size=8,
max_encoder_input_len=1500,
max_decoder_input_len=1,
max_output_len=200,
builder_opt=None,
)),
}
def get_allowed_models(benchmark_type=None):
if benchmark_type is None:
return set(_allowed_configs.keys())
else:
return set(i.name for i in _allowed_configs.values()
if i.benchmark_type == benchmark_type)
def get_build_config(
model_name,
return_dict=True) -> Union[Dict, BuildConfig, EncDecBuildConfig]:
if model_name in _allowed_configs:
cfg = _allowed_configs[model_name].build_config
return asdict(cfg) if return_dict else cfg
else:
raise KeyError(f'Unexpected model: {model_name}. Please add the model '
'to allowed_configs.py')
def get_model_family(model_name):
if model_name in _allowed_configs:
return _allowed_configs[model_name].family
else:
raise KeyError(f'Unexpected model: {model_name}. Please add the model '
'to allowed_configs.py')
def get_benchmark_type(model_name):
if model_name in _allowed_configs:
return _allowed_configs[model_name].benchmark_type
else:
raise KeyError(f'Unexpected model: {model_name}. Please add the model '
'to allowed_configs.py')