TensorRT-LLMs/benchmarks/python/mem_monitor.py
Kaiyu Xie 4bb65f216f
Update TensorRT-LLM (#1274)
* Update TensorRT-LLM

---------

Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-12 18:15:52 +08:00

85 lines
3.3 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from multiprocessing import Event, Process, Queue
from tensorrt_llm.logger import logger
from tensorrt_llm.profiler import (MemUnitType, bytes_to_target_unit,
device_memory_info, host_memory_info)
class MemoryMonitor:
def __init__(self, query_interval=0.1, disable_host_mem_monitor=False):
self.query_interval = query_interval # second(s)
self.mem_monitor_process = None
# bytes
self._peak_host_memory = 0
self._peak_device_memory = 0
self.pid = os.getpid()
self.device_handles = {}
self.signal_event = Event() # Sending signal to subprocess
self.peak_mem_queue = Queue() # Receiving results from subprocess
self.disable_host_mem_monitor = disable_host_mem_monitor
def start(self):
self.mem_monitor_process = Process(target=self._upd_peak_memory_usage,
args=(self.signal_event,
self.peak_mem_queue))
self.mem_monitor_process.start()
logger.debug("Launched memory monitor subprocess.")
def kill(self):
if self.mem_monitor_process is not None:
self.mem_monitor_process.kill()
logger.debug("Memory monitor subprocess is killed.")
def stop(self):
self.signal_event.set()
logger.debug("Sent signal to stop memory monitor subprocess.")
peak_mem_use = self.peak_mem_queue.get(timeout=10)
self._peak_host_memory = max(self._peak_host_memory, peak_mem_use[0])
self._peak_device_memory = max(self._peak_device_memory,
peak_mem_use[1])
self.mem_monitor_process.join(timeout=10)
self.mem_monitor_process = None
logger.debug("Memory monitor subprocess joined.")
def _upd_peak_memory_usage(self, signal_event, peak_mem_queue):
peak_host_used, peak_device_used = self.get_memory_usage()
while not signal_event.is_set():
host_used, device_used = self.get_memory_usage()
peak_host_used = max(host_used, peak_host_used)
peak_device_used = max(device_used, peak_device_used)
peak_mem_queue.put((peak_host_used, peak_device_used))
def get_memory_usage(self):
if self.disable_host_mem_monitor:
host_used = 0
else:
host_used, _, _ = host_memory_info(self.pid)
device_used, _, _ = device_memory_info()
return host_used, device_used
def get_peak_memory_usage(self, unit: MemUnitType = 'GiB'):
return bytes_to_target_unit(self._peak_host_memory, unit), \
bytes_to_target_unit(self._peak_device_memory, unit)