mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
* Update TensorRT-LLM --------- Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
546 lines
18 KiB
C++
546 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/batch_manager/kvCacheConfig.h"
|
|
#include "tensorrt_llm/batch_manager/llmRequest.h" // TODO forward declare
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/common.h"
|
|
#include "tensorrt_llm/runtime/cudaStream.h"
|
|
#include "tensorrt_llm/runtime/gptModelConfig.h"
|
|
#include "tensorrt_llm/runtime/iTensor.h"
|
|
#include "tensorrt_llm/runtime/worldConfig.h"
|
|
|
|
#include <NvInferRuntime.h>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <list>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
namespace std
|
|
{
|
|
|
|
// Implement std::hash function object for vector<TokenIdType>.
|
|
// This allows us to use unordered_map with vector<TokenIdType> as key.
|
|
// Based on https://stackoverflow.com/questions/20511347/a-good-hash-function-for-a-vector/72073933#72073933
|
|
|
|
template <>
|
|
struct hash<vector<int32_t>>
|
|
{
|
|
size_t operator()(vector<int32_t> const& vec) const noexcept
|
|
{
|
|
size_t seed = vec.size();
|
|
for (auto x : vec)
|
|
{
|
|
uint32_t y = static_cast<uint32_t>(x);
|
|
y = ((y >> 16) ^ y) * 0x45d9f3b;
|
|
y = ((y >> 16) ^ y) * 0x45d9f3b;
|
|
y = (y >> 16) ^ y;
|
|
seed ^= y + 0x9e3779b9 + (seed << 6) + (seed >> 2);
|
|
}
|
|
return seed;
|
|
}
|
|
};
|
|
|
|
} // namespace std
|
|
|
|
namespace tensorrt_llm::batch_manager::kv_cache_manager
|
|
{
|
|
|
|
class KVCacheBlock;
|
|
|
|
using SizeType = tensorrt_llm::runtime::SizeType;
|
|
using TokenIdType = tensorrt_llm::runtime::TokenIdType;
|
|
using VecTokens = std::vector<TokenIdType>;
|
|
using BeamTokens = std::vector<VecTokens>;
|
|
using BlockPtr = std::shared_ptr<KVCacheBlock>;
|
|
using FreeBlocksQueue = std::list<BlockPtr>;
|
|
using NextBlockMap = std::unordered_map<VecTokens, BlockPtr>;
|
|
|
|
struct KvCacheStats
|
|
{
|
|
SizeType maxNumBlocks;
|
|
SizeType freeNumBlocks;
|
|
SizeType usedNumBlocks;
|
|
SizeType toksPerBlock;
|
|
};
|
|
|
|
// Basic building block of a paged KV cache - a single
|
|
// cache block. This class just holds metadata, no pointers
|
|
// since it is reused across all layers.
|
|
class KVCacheBlock
|
|
{
|
|
public:
|
|
explicit KVCacheBlock(SizeType blockIdx);
|
|
|
|
void startScheduling();
|
|
|
|
[[nodiscard]] SizeType getBlockIdx() const;
|
|
|
|
void incRefCount();
|
|
|
|
void decRefCount();
|
|
|
|
void decSchedulingRefCount();
|
|
|
|
[[nodiscard]] bool hasRefs() const;
|
|
|
|
[[nodiscard]] bool hasSchedulingRefs() const;
|
|
|
|
void setTokens(VecTokens& tokens, bool isFull);
|
|
|
|
[[nodiscard]] VecTokens const& getTokens() const;
|
|
|
|
void setFreeBlockIterator(FreeBlocksQueue::iterator freeBlockIterator);
|
|
|
|
void resetFreeBlockIterator();
|
|
|
|
[[nodiscard]] std::optional<FreeBlocksQueue::iterator> const& getFreeBlockIterator() const;
|
|
|
|
void setPrevBlock(BlockPtr prevBlock);
|
|
|
|
void addNextBlock(VecTokens const& tokens, BlockPtr block);
|
|
|
|
void removeNextBlock(VecTokens const& tokens);
|
|
|
|
static std::shared_ptr<KVCacheBlock> findLeafBlock(std::shared_ptr<KVCacheBlock> searchStart);
|
|
|
|
[[nodiscard]] BlockPtr findMatchingBlock(VecTokens const& tokens) const;
|
|
|
|
//! \brief Free block from previous block if present.
|
|
void freeLeafBlock();
|
|
|
|
[[nodiscard]] bool isFull() const;
|
|
|
|
[[nodiscard]] bool isShared() const;
|
|
|
|
private:
|
|
// Linear index of block in pool
|
|
SizeType mBlockIdx;
|
|
|
|
// Number of references to the block
|
|
SizeType mRefCount;
|
|
|
|
// Number of references to the block
|
|
SizeType mSchedulingRefCount;
|
|
|
|
// Key of this block in mNextBlocks map in block pointed to by mPrevBlock
|
|
VecTokens mTokens;
|
|
|
|
// Previous block in sequence
|
|
BlockPtr mPrevBlock;
|
|
|
|
// Next block(s) in sequence(s)
|
|
NextBlockMap mNextBlocks;
|
|
|
|
// Iterator pointing to this block in mFreeBlocks.
|
|
std::optional<FreeBlocksQueue::iterator> mFreeBlockIterator;
|
|
|
|
// Flag indicating if block is full
|
|
bool mIsFull;
|
|
};
|
|
|
|
class GenerationRequest
|
|
{
|
|
public:
|
|
using SizeType = tensorrt_llm::runtime::SizeType;
|
|
using SharedPtr = std::shared_ptr<GenerationRequest>;
|
|
|
|
explicit GenerationRequest(SizeType seqSlotIdx, SizeType numTokens, SizeType beamWidth)
|
|
: mSeqSlotIdx(seqSlotIdx)
|
|
, mNumTokens(numTokens)
|
|
, mBeamWidth(beamWidth)
|
|
, mCacheBlockIds(beamWidth)
|
|
{
|
|
}
|
|
|
|
void addNewTokens(SizeType n)
|
|
{
|
|
mNumTokens += n;
|
|
}
|
|
|
|
void removeTokens(SizeType n)
|
|
{
|
|
TLLM_CHECK(n <= mNumTokens);
|
|
TLLM_CHECK(mNumTokens - n >= 0);
|
|
mNumTokens -= n;
|
|
}
|
|
|
|
[[nodiscard]] SizeType getSequenceSlotIdx() const
|
|
{
|
|
return mSeqSlotIdx;
|
|
}
|
|
|
|
[[nodiscard]] SizeType getNumTokens() const
|
|
{
|
|
return mNumTokens;
|
|
}
|
|
|
|
[[nodiscard]] SizeType getBeamWidth() const
|
|
{
|
|
return mBeamWidth;
|
|
}
|
|
|
|
[[nodiscard]] std::vector<std::vector<SizeType>> const& getCacheBlockIds() const
|
|
{
|
|
return mCacheBlockIds;
|
|
}
|
|
|
|
void addCacheBlock(SizeType beamIdx, SizeType blockIdx)
|
|
{
|
|
mCacheBlockIds.at(beamIdx).push_back(blockIdx);
|
|
}
|
|
|
|
void changeCacheBlock(SizeType beamIdx, SizeType pagedBlockIdx, SizeType blockIdx)
|
|
{
|
|
mCacheBlockIds.at(beamIdx).at(pagedBlockIdx) = blockIdx;
|
|
}
|
|
|
|
void clearCacheBlocks()
|
|
{
|
|
for (auto& beamBlockIds : mCacheBlockIds)
|
|
{
|
|
beamBlockIds.clear();
|
|
}
|
|
}
|
|
|
|
void removeLastBlock()
|
|
{
|
|
for (auto& beamBlockIds : mCacheBlockIds)
|
|
{
|
|
beamBlockIds.pop_back();
|
|
}
|
|
}
|
|
|
|
void setNumPrepopulatedTokens(std::vector<int> numPrepopulatedTokens)
|
|
{
|
|
mNumPrepopulatedTokens = std::move(numPrepopulatedTokens);
|
|
}
|
|
|
|
[[nodiscard]] std::vector<int> const& getNumPrepopulatedTokens() const
|
|
{
|
|
return mNumPrepopulatedTokens;
|
|
}
|
|
|
|
private:
|
|
// Slot id of the sequence
|
|
SizeType mSeqSlotIdx;
|
|
// Current number of generated tokens
|
|
SizeType mNumTokens;
|
|
// Number of beams
|
|
SizeType mBeamWidth;
|
|
// List of blocks allocated for each beam of the sequence
|
|
std::vector<std::vector<SizeType>> mCacheBlockIds;
|
|
// Number of tokens already in kv cache before context phase.
|
|
// A value > 0 indicates cached kv cache blocks were reused.
|
|
// One value per beam.
|
|
std::vector<int> mNumPrepopulatedTokens;
|
|
};
|
|
|
|
// BlockManager manages overall metadata of KVCacheBlocks in a layer of the
|
|
// network. Layers are expected to be symmetric, so the metadata can be
|
|
// reused for all layers of the network.
|
|
// The array of cache blocks for a layer is called a pool.
|
|
// Each pool has shape [max_blocks, 2, num_heads, tokens_per_block, head_size].
|
|
// Size per block and number of blocks per pool are pre-determined and set in
|
|
// constructor. These should not be changed after.
|
|
// Block shape is [2, num_heads, tokens_per_block, head_size].
|
|
// BlockManager maintains a list of free blocks at any time.
|
|
// Alloc pops off the block at the front, and Free pushes it back to the vector.
|
|
// BlockManager maintains a vector of lists of seqSlotIdx to allocated blocks
|
|
// per sequence. This can be used to Free all blocks belonging to a sequence.
|
|
class BlockManager
|
|
{
|
|
public:
|
|
using SizeType = tensorrt_llm::runtime::SizeType;
|
|
|
|
explicit BlockManager(SizeType blocksInPool, SizeType tokensPerBlock);
|
|
|
|
~BlockManager();
|
|
|
|
void startScheduling();
|
|
|
|
//! \brief Assign blocks for new sequence. Try to reuse blocks.
|
|
void addSequence(GenerationRequest& sequence, SizeType inputLength, std::shared_ptr<LlmRequest> const& llmRequest);
|
|
|
|
//! \brief Assign blocks for new sequence. Does not try to reuse blocks.
|
|
void addSequence(GenerationRequest& sequence, SizeType numBlocks, SizeType unsharedBlockIdx);
|
|
|
|
//! \brief Allocate new block for each beam of the sequence.
|
|
//! \details Might free cached blocks if no free blocks are available.
|
|
void allocateBlock(GenerationRequest& sequence, bool shareAmongBeams = false);
|
|
|
|
void replaceSharedBlock(GenerationRequest& sequence, SizeType blockIdx);
|
|
|
|
//! \brief Release blocks of the sequence. Store blocks for reuse if llmReqeust is provided.
|
|
void releaseBlocks(GenerationRequest& sequence, std::shared_ptr<LlmRequest> const& llmRequest = nullptr);
|
|
|
|
//! \brief Simulate freeing all blocks for that sequence to check impact on number of free blocks
|
|
void schedulingReleaseBlocks(GenerationRequest& sequence);
|
|
|
|
//! \brief Release last block in the sequence
|
|
void releaseLastBlock(GenerationRequest& sequence);
|
|
|
|
[[nodiscard]] SizeType getNumFreeBlocks() const noexcept
|
|
{
|
|
return mFreeBlocks.size();
|
|
}
|
|
|
|
[[nodiscard]] SizeType getNumReusedBlocks() const noexcept
|
|
{
|
|
return mReusedBlocks;
|
|
}
|
|
|
|
[[nodiscard]] SizeType getNumAllocatedBlocks() const noexcept
|
|
{
|
|
return getMaxNumBlocks() - getNumFreeBlocks();
|
|
}
|
|
|
|
[[nodiscard]] bool hasFreeBlocks(SizeType numRequired = 1) const noexcept
|
|
{
|
|
return getNumFreeBlocks() >= numRequired;
|
|
}
|
|
|
|
[[nodiscard]] bool schedulingHasFreeBlocks(SizeType numRequired = 1) const noexcept
|
|
{
|
|
return mSchedulingNumFreeBlocks >= numRequired;
|
|
}
|
|
|
|
[[nodiscard]] SizeType getMaxNumBlocks() const noexcept
|
|
{
|
|
return static_cast<SizeType>(mAllBlocksByIdx.size());
|
|
}
|
|
|
|
[[nodiscard]] SizeType getTokensPerBlock() const noexcept
|
|
{
|
|
return mTokensPerBlock;
|
|
}
|
|
|
|
private:
|
|
//! \brief Add single block to beam of sequence and mAllocatedBlocksPerSeq.
|
|
void addBlockToBeam(BlockPtr& block, GenerationRequest& sequence, SizeType beamIdx, SizeType seqSlotIdx);
|
|
|
|
//! \brief Store blocks in cached blocks.
|
|
//! \param blockedTokens Tokens of each block.
|
|
//! \param blockIds Id of each block.
|
|
void storeBlocks(std::list<VecTokens> blockedTokens, std::vector<SizeType> const& blockIds);
|
|
|
|
//! \brief Try to load blocks from cache. Allocate new blocks if necessary.
|
|
//! \param blockedTokens Tokens of each block.
|
|
//! \param sequence Sequence to which blocks are assigned.
|
|
//! \param beamIdx Beam of sequence to which blocks are assigned.
|
|
//! \param seqSlotIdx Batch slot of sequence to which blocks are assigned.
|
|
//! \return Number of matched tokens from loaded blocks.
|
|
SizeType loadOrAllocateBlocks(
|
|
std::list<VecTokens> const& blockedTokens, GenerationRequest& sequence, SizeType beamIdx, SizeType seqSlotIdx);
|
|
|
|
//! \brief Find block least likely to be reused, free it if necessary and return.
|
|
[[nodiscard]] BlockPtr getFreeBlock();
|
|
|
|
//! \brief Claim block if it is in free blocks list.
|
|
void claimBlock(KVCacheBlock& block);
|
|
|
|
//! \brief Free block from previous block and claim it from free blocks list.
|
|
void claimLeafBlock(KVCacheBlock& block);
|
|
|
|
private:
|
|
// List of free blocks
|
|
FreeBlocksQueue mFreeBlocks;
|
|
// List of allocated blocks for each sequences
|
|
std::vector<std::vector<BlockPtr>> mAllocatedBlocksPerSeq;
|
|
// Used to keep track of number of free blocks during scheduling
|
|
SizeType mSchedulingNumFreeBlocks;
|
|
// Number of tokens per one block
|
|
SizeType mTokensPerBlock;
|
|
// List of all blocks by idx
|
|
std::vector<BlockPtr> mAllBlocksByIdx;
|
|
// Dummy block acting as root for BlockToken searches
|
|
BlockPtr mCachedBlocksRoot;
|
|
// Statistics for block allocations/reuse
|
|
std::size_t mAllocTotalBlocks, mAllocNewBlocks, mReusedBlocks;
|
|
};
|
|
|
|
class KVCacheManager
|
|
{
|
|
public:
|
|
using SizeType = tensorrt_llm::runtime::SizeType;
|
|
using SequencesPtr = GenerationRequest::SharedPtr;
|
|
using CudaStreamPtr = std::shared_ptr<runtime::CudaStream>;
|
|
|
|
KVCacheManager(SizeType numLayers, SizeType numKvHeads, SizeType sizePerHead, SizeType tokensPerBlock,
|
|
SizeType maxNumBlocks, SizeType maxNumSequences, SizeType maxBeamWidth, SizeType maxAttentionWindow,
|
|
SizeType sinkTokenLength, bool useOneMoreBlock, nvinfer1::DataType dtype, CudaStreamPtr stream,
|
|
bool enableBlockReuse = false, bool useUvm = false);
|
|
|
|
void startScheduling();
|
|
|
|
[[nodiscard]] SizeType getTokensPerBlock() const
|
|
{
|
|
return mBlockManager.getTokensPerBlock();
|
|
}
|
|
|
|
[[nodiscard]] SizeType getMaxNumBlocks() const
|
|
{
|
|
return mBlockManager.getMaxNumBlocks();
|
|
}
|
|
|
|
[[nodiscard]] SizeType getUsedNumBlocks() const
|
|
{
|
|
return mBlockManager.getNumAllocatedBlocks();
|
|
}
|
|
|
|
[[nodiscard]] SizeType getNumFreeBlocks() const
|
|
{
|
|
return mBlockManager.getNumFreeBlocks();
|
|
}
|
|
|
|
[[nodiscard]] KvCacheStats getKvCacheStats() const
|
|
{
|
|
KvCacheStats kvCacheStats;
|
|
kvCacheStats.maxNumBlocks = getMaxNumBlocks();
|
|
kvCacheStats.freeNumBlocks = getNumFreeBlocks();
|
|
kvCacheStats.usedNumBlocks = getUsedNumBlocks();
|
|
kvCacheStats.toksPerBlock = getTokensPerBlock();
|
|
|
|
return kvCacheStats;
|
|
}
|
|
|
|
// Volume of [2, numKvHeads, tokensPerBlock, sizePerHead]
|
|
[[nodiscard]] SizeType getBlockSize() const
|
|
{
|
|
return mBlockSize;
|
|
}
|
|
|
|
[[nodiscard]] SizeType getMaxBlocksPerSeq() const
|
|
{
|
|
return mMaxBlocksPerSeq;
|
|
}
|
|
|
|
[[nodiscard]] BlockManager const& getBlockManager() const
|
|
{
|
|
return mBlockManager;
|
|
}
|
|
|
|
/// @brief Function that computes the number of KV cache blocks needed to advance a request by one or two
|
|
/// iterations
|
|
/// @param req The request for which we need to calculate the number of needed KV cache blocks
|
|
/// @return The number of blocks
|
|
[[nodiscard]] SizeType getNeededBlocksOneStep(LlmRequest const& req, bool twoStepsLookAhead) const;
|
|
|
|
/// @brief Function that computes the number of KV cache blocks needed to advance a request to completion (i.e. for
|
|
/// maxNewTokens)
|
|
/// @param req The request for which we need to calculate the number of needed KV cache blocks
|
|
/// @return The number of blocks
|
|
[[nodiscard]] SizeType getNeededBlocksToCompletion(LlmRequest const& req) const;
|
|
|
|
[[nodiscard]] std::vector<runtime::ITensor::SharedPtr> const& getMemoryPools() const
|
|
{
|
|
return mPools;
|
|
}
|
|
|
|
void addContextTokens(SizeType seqSlotIdx, SizeType numTokens);
|
|
|
|
void addToken(SizeType seqSlotIdx);
|
|
|
|
void addSequence(SizeType seqSlotIdx, SizeType inputLength, SizeType beamWidth,
|
|
std::shared_ptr<LlmRequest> const& llmRequest = nullptr);
|
|
|
|
void removeSequence(SizeType seqSlotIdx, std::shared_ptr<LlmRequest> const& llmRequest = nullptr);
|
|
|
|
void schedulingRemoveSequence(SizeType seqSlotIdx);
|
|
|
|
void getBlockPointersOfBatch(
|
|
runtime::ITensor& dstPointers, SizeType firstBatchSlotIdx, SizeType batchSize, SizeType beamWidth) const;
|
|
|
|
void copyBlockPointers(
|
|
runtime::ITensor& dstPointers, SizeType dstSlotOffset, SizeType seqSlotIdx, SizeType beamWidth) const;
|
|
|
|
// Volume of [2, numKvHeads, tokensPerBlock, sizePerHead]
|
|
[[nodiscard]] static SizeType constexpr calculatePageSize(tensorrt_llm::runtime::GptModelConfig const& modelConfig)
|
|
{
|
|
return 2 * modelConfig.getNbKvHeads() * modelConfig.getTokensPerBlock() * modelConfig.getSizePerHead();
|
|
}
|
|
|
|
// numLayers * 2 * numKvHeads * sizePerHead
|
|
[[nodiscard]] static SizeType constexpr calculateCacheSizePerToken(
|
|
tensorrt_llm::runtime::GptModelConfig const& modelConfig, tensorrt_llm::runtime::WorldConfig const& worldConfig)
|
|
{
|
|
return modelConfig.getNbLayers(worldConfig.getPipelineParallelism()) * 2 * modelConfig.getNbKvHeads()
|
|
* modelConfig.getSizePerHead();
|
|
}
|
|
|
|
[[nodiscard]] static SizeType calculateMaxNumBlocks(KvCacheConfig const& config, nvinfer1::DataType dtype,
|
|
tensorrt_llm::runtime::GptModelConfig const& modelConfig, tensorrt_llm::runtime::WorldConfig const& worldConfig,
|
|
runtime::BufferManager const& bufferManager);
|
|
|
|
[[nodiscard]] SizeType getNumPrepopulatedTokens(SizeType batchSlotIdx, SizeType beamIdx) const
|
|
{
|
|
auto const& prepopulatedTokens = mSequences.at(batchSlotIdx)->getNumPrepopulatedTokens();
|
|
return prepopulatedTokens.size() > 0 ? prepopulatedTokens.at(beamIdx) : 0;
|
|
}
|
|
|
|
[[nodiscard]] bool isEnableBlockReuse() const
|
|
{
|
|
return mEnableBlockReuse;
|
|
}
|
|
|
|
void removeToken(SizeType seqSlotIdx);
|
|
void rewindKVCache(SizeType seqSlotIdx, SizeType rewindLengths);
|
|
|
|
private:
|
|
void resetBlockPointers(SizeType seqSlotIdx, SizeType beamWidth);
|
|
void cacheBlockPointers(GenerationRequest const& seq, SizeType seqSlotIdx);
|
|
void cacheNewBlockPointers(GenerationRequest const& seq, SizeType seqSlotIdx);
|
|
void updateNewBlockPointer(GenerationRequest const& seq, SizeType seqSlotIdx, SizeType blockIdx);
|
|
void updateToken(SizeType seqSlotIdx, bool addToken);
|
|
|
|
private:
|
|
// Number of elements per one blocks
|
|
SizeType mBlockSize;
|
|
// Maximum number of sequences
|
|
SizeType mMaxNumSequences;
|
|
// Maximum beam width
|
|
SizeType mMaxBeamWidth;
|
|
// Maximum number of blocks per sequence
|
|
SizeType mMaxBlocksPerSeq;
|
|
// Maximum kv cache length per sequence
|
|
// Enable cyclic kv cache when it exceeds
|
|
SizeType mMaxAttentionWindow;
|
|
// Number of tokens to fill up the sink tokens to a full block size
|
|
SizeType mSinkBubbleLength;
|
|
// Maximum token length (including bubble)
|
|
SizeType mMaxTokenNum;
|
|
// Number of tokens in the sink blocks
|
|
SizeType mSinkBlockTokenLength;
|
|
// Pools
|
|
std::vector<runtime::ITensor::SharedPtr> mPools;
|
|
// Block manager
|
|
BlockManager mBlockManager;
|
|
// List of all sequences
|
|
std::vector<SequencesPtr> mSequences;
|
|
// buffer for block pointers for all managed sequences
|
|
runtime::ITensor::SharedPtr mSequenceBlockPointers;
|
|
// Buffer manager
|
|
runtime::BufferManager mBufferManager;
|
|
// Whether to cache KV pages for reuse
|
|
bool mEnableBlockReuse;
|
|
};
|
|
} // namespace tensorrt_llm::batch_manager::kv_cache_manager
|