TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/decodingOutput.h
Kaiyu Xie 655524dd82
Update TensorRT-LLM (#1168)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-27 17:37:34 +08:00

90 lines
3.7 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include <utility>
namespace tensorrt_llm::runtime
{
class DecodingOutput
{
public:
using TensorPtr = ITensor::SharedPtr;
class BeamHypotheses
{
public:
TensorPtr outputIdsTgt; // [batchSize, 2 * beamWidth, maxSeqLen]
TensorPtr sequenceLengthsTgt; // [batchSize, 2 * beamWidth]
TensorPtr cumLogProbs; // [batchSize, 2 * beamWidth]
TensorPtr normedScores; // [batchSize, 2 * beamWidth]
TensorPtr logProbs; // [batchSize, 2 * beamWidth, maxSeqLen]
TensorPtr minNormedScores; // [batchSize]
TensorPtr numBeams; // [batchSize]
TensorPtr isDone; // [batchSize]
void empty(BufferManager& manager);
void reshape(SizeType batchSize, SizeType beamWidth, SizeType maxSequenceLength);
void release();
void init(BufferManager& manager, TokenIdType endId);
BeamHypotheses slice(SizeType batchIndex, SizeType size) const;
};
static float constexpr kNegativeInfinity = -1e20f;
explicit DecodingOutput(TensorPtr ids)
: ids{std::move(ids)}
{
TLLM_CHECK_WITH_INFO(static_cast<bool>(this->ids), "Invalid ids tensor");
}
// mandatory parameters
TensorPtr ids; // [batchSize, beamWidth, maxSeqLen], on gpu, must contain previously generated token ids for all
// steps before DecodingInput.step
TensorPtr newTokensSteps; // [maxTokensPerStep, batchSize, beamWidth] new tokens at each generated token of
// maxTokensPerStep, on gpu.
TensorPtr newTokens; // [batchSize, beamWidth] usually a view of newTokensSteps for the current token, on gpu.
std::vector<TensorPtr> newTokensVec; // vector of size maxTokensPerStep with tensor [batchSize, beamWidth].
// Vector of views on newTokensSteps for each token. Elements are on gpu.
// optional parameters
TensorPtr finished; // [batchSize, beamWidth],
// Set to true by decoding if any of the stop conditions are met or if DecodingInput.finished is
// true. In beam search and to determine whether to stop according to
// DecodingInput.sequenceLimitLength, on gpu
TensorPtr finishedSum; // [batchSize], the sum of finished sequences per request, in pinned memory
// mandatory parameters for beam search
TensorPtr logProbs; // [batchSize, beamWidth, maxSeqLen], must be float*, on gpu
TensorPtr cumLogProbs; // [batchSize, beamWidth], optional for sampling, on gpu
TensorPtr parentIds; // [batchSize, beamWidth, maxSeqLen], on gpu
TensorPtr lengths; // [batchSize, beamWidth], total sequence lengths including padding, on gpu
TensorPtr cacheIndirection; // [batchSize, beamWidth, maxSeqLen], k/v indirection for next generation step, on gpu
BeamHypotheses beamHypotheses;
};
} // namespace tensorrt_llm::runtime