TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/iGptDecoderBatch.h
Kaiyu Xie 4bb65f216f
Update TensorRT-LLM (#1274)
* Update TensorRT-LLM

---------

Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-12 18:15:52 +08:00

194 lines
7.2 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/cudaEvent.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/iStatefulGptDecoder.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/utils/sessionUtils.h"
#include <memory>
#include <utility>
#include <vector>
namespace tensorrt_llm::runtime
{
namespace decoder_batch
{
class Request
{
public:
using ConstTensorPtr = ITensor::SharedConstPtr;
using TensorPtr = ITensor::SharedPtr;
using BufferPtr = IBuffer::SharedPtr;
explicit Request(ConstTensorPtr ids, SizeType inputLen, std::optional<SizeType> maxNewTokens = std::nullopt,
std::optional<SizeType> endId = std::nullopt)
: ids{std::move(ids)}
, inputLen(inputLen)
, maxNewTokens{maxNewTokens}
, endId{endId}
, computeCumLogProbs(false)
, computeLogProbs(false)
, generatedTokensPerStep(1)
{
}
// mandatory parameters
ConstTensorPtr ids; // [inputSeqLen], the input sequence of token ids, on gpu
SizeType inputLen; // the input length without draft tokens
// optional parameters
std::optional<SizeType> maxNewTokens; // maximum number of tokens to generate for this request
std::optional<SizeType> endId; // end token id
BufferPtr draftTokens; // [generatedTokensPerStep - 1], on gpu, draft tokens from speculative decoding
std::optional<TensorPtr>
draftLogits; // [generatedTokensPerStep - 1, vocabSize], on gpu, draft tokens from speculative decoding
TensorPtr embeddingBias; // [vocabSizePadded], on gpu
TensorPtr badWordsList; // [2, badWordsLength], on gpu
TensorPtr stopWordsList; // [2, stopWordsLength], on gpu
bool computeCumLogProbs; // boolean that controls if cumLogProbs should be computed for that request
bool computeLogProbs; // boolean that controls if cumLogProbs should be computed for that request
SizeType generatedTokensPerStep;
};
class Input
{
public:
using TensorConstPtr = ITensor::SharedConstPtr;
using TensorPtr = ITensor::SharedPtr;
explicit Input(std::vector<TensorConstPtr> const& logits, std::vector<bool> const& active)
: logits{logits}
, active{active}
{
TLLM_CHECK_WITH_INFO(
this->active.size() == logits.size(), "'active' vector size does not match logits vector size");
}
explicit Input(std::vector<TensorConstPtr> const& logits)
: Input{logits, std::vector<bool>(logits.size(), true)}
{
}
explicit Input(std::vector<TensorPtr> const& logits, std::vector<bool> const& active)
: Input{
utils::transformVector(logits, [](auto& x) { return std::const_pointer_cast<ITensor const>(x); }), active}
{
}
explicit Input(std::vector<TensorPtr> const& logits)
: Input{logits, std::vector<bool>(logits.size(), true)}
{
}
// mandatory parameters
std::vector<TensorConstPtr>
logits; // batchSize * [1, beamWidth, vocabSizePadded] or [generatedTokensPerStep, 1, vocabSizePadded], on gpu
// control activity of decoder slots in batch
std::vector<bool> active; // [batchSize]
// parameters for beam search
TensorConstPtr cacheIndirection; // [batchSize, maxBeamWidth, maxSeqLen] - indices into KV cache of different rays
// within one beam for beam search, on gpu
};
using Output = decoder::Output;
class Token
{
public:
explicit Token(CudaEvent&& event, std::vector<bool> const& active)
: event(std::move(event))
, active(active)
{
}
CudaEvent event;
std::vector<bool> active;
};
} // namespace decoder_batch
//! GPT decoder class with support for in-flight batching
class IGptDecoderBatch : public virtual IStatefulGptDecoder
{
public:
using CudaStreamPtr = std::shared_ptr<CudaStream>;
using TensorPtr = std::shared_ptr<ITensor>;
using TokenPtr = std::unique_ptr<decoder_batch::Token const>;
//! @brief Run one step for all requests without blocking the host process and return the token for synchronization.
virtual TokenPtr forwardAsync(decoder_batch::Output& output, decoder_batch::Input const& input) = 0;
//! @brief Wait for the call to `forwardAsync` associated with a token to complete.
virtual void forwardSync(decoder_batch::Token const& token) = 0;
//! @brief Run one step for all requests and wait for completion on the host.
virtual void forward(decoder_batch::Output& output, decoder_batch::Input const& input)
{
forwardSync(*forwardAsync(output, input));
}
//! @param batchIdx index of the batch
//! @returns [maxBeamWidth, maxInputLength + maxNewTokens], contains input token ids and generated token
//! ids without padding for request `batchIdx`, on gpu
[[nodiscard]] virtual TensorPtr getOutputIds(SizeType batchIdx) const = 0;
//! @brief Gather final beam search results for request `batchIdx`.
//! Result will only be available after event returned
[[nodiscard]] virtual CudaEvent finalize(SizeType batchIdx) const = 0;
//! @returns [batchSize (actual)], marks finished requests (per batch)
[[nodiscard]] virtual std::vector<bool> getFinished() const = 0;
//! @returns [batchSize, beamWidth], cumulative log probabilities (per beam), on gpu
[[nodiscard]] virtual TensorPtr getCumLogProbs() const = 0;
//! @returns [beamWidth], cumulative log probabilities (per beam) for request batchIdx, on gpu
[[nodiscard]] virtual TensorPtr getCumLogProbs(SizeType batchIdx) const = 0;
//! @returns [batchSize, beamWidth, maxSeqLen], log probabilities (per beam), on gpu
[[nodiscard]] virtual TensorPtr getLogProbs() const = 0;
//! @returns [beamWidth, maxSeqLen], cumulative log probabilities (per beam) for request batchIdx, on gpu
[[nodiscard]] virtual TensorPtr getLogProbs(SizeType batchIdx) const = 0;
[[nodiscard]] virtual TensorPtr getParentIds() const = 0;
[[nodiscard]] virtual std::vector<SizeType> getNbSteps() const = 0;
//! @brief Initialize batched decoder at seqSlots with a new `requests`.
virtual void newRequests(std::vector<SizeType> const& seqSlots, std::vector<decoder_batch::Request> const& requests,
std::vector<SamplingConfig> const& samplingConfigs)
= 0;
//! @returns [batchSize, maxTokensPerStep-1], predicted draft tokens for next step, on gpu
virtual TensorPtr getNextDraftTokens() const = 0;
//! @returns [batchSize], lengths of the predicted draft tokens for next step, on gpu
virtual TensorPtr getNextDraftTokenLengths() const = 0;
protected:
IGptDecoderBatch() = default;
};
} // namespace tensorrt_llm::runtime