mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
* Update TensorRT-LLM --------- Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
240 lines
5.8 KiB
C++
240 lines
5.8 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#ifdef ENABLE_FP8
|
|
#include <cuda_fp8.h>
|
|
#include <cuda_runtime.h>
|
|
#include <stdint.h>
|
|
|
|
#define FP8_MHA
|
|
#define FUSE_GEMM_ACT
|
|
#define FP8_GEMM_OUTPUT_QUANT_DISABLE
|
|
|
|
#ifdef FUSE_GEMM_ACT
|
|
#define USE_QGMMA
|
|
#endif
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace common
|
|
{
|
|
|
|
constexpr float FP8_E4M3_MAX = 448.0f;
|
|
|
|
enum QuantizeMode
|
|
{
|
|
PER_CHANNEL,
|
|
PER_TENSOR,
|
|
PER_CHANNEL_WEIGHT_PER_TENSOR_ACT,
|
|
PER_TOKEN,
|
|
};
|
|
|
|
// Packed Data Type
|
|
typedef struct __CUDA_ALIGN__(32)
|
|
{
|
|
float array[8];
|
|
} float8;
|
|
|
|
typedef struct __CUDA_ALIGN__(16)
|
|
{
|
|
half array[8];
|
|
} half8;
|
|
|
|
typedef struct __CUDA_ALIGN__(8)
|
|
{
|
|
half2 array[2];
|
|
} half2_2;
|
|
|
|
typedef struct __CUDA_ALIGN__(8)
|
|
{
|
|
half array[4];
|
|
} half_4;
|
|
|
|
#ifdef ENABLE_BF16
|
|
typedef struct __CUDA_ALIGN__(4)
|
|
{
|
|
__nv_bfloat16 array[2];
|
|
} __nv_bfloat16_2;
|
|
|
|
typedef struct __CUDA_ALIGN__(8)
|
|
{
|
|
__nv_bfloat162 x, y;
|
|
} __nv_bfloat162_2_xy;
|
|
|
|
typedef struct __CUDA_ALIGN__(8)
|
|
{
|
|
__nv_bfloat16 array[4];
|
|
} __nv_bfloat164;
|
|
|
|
typedef struct __CUDA_ALIGN__(8)
|
|
{
|
|
__nv_bfloat162 array[2];
|
|
} __nv_bfloat162_2;
|
|
|
|
typedef struct __CUDA_ALIGN__(16)
|
|
{
|
|
__nv_bfloat16 array[8];
|
|
} __nv_bfloat168;
|
|
|
|
typedef struct __CUDA_ALIGN__(16)
|
|
{
|
|
__nv_bfloat162 array[4];
|
|
} __nv_bfloat162_4;
|
|
|
|
typedef struct __CUDA_ALIGN__(32)
|
|
{
|
|
__nv_bfloat16 array[16];
|
|
} __nv_bfloat1616;
|
|
#endif
|
|
|
|
#ifdef ENABLE_FP8
|
|
typedef struct __CUDA_ALIGN__(2)
|
|
{
|
|
__nv_fp8_e4m3 array[2];
|
|
} __nv_fp8_2_e4m3;
|
|
|
|
typedef struct __CUDA_ALIGN__(4)
|
|
{
|
|
__nv_fp8_e4m3 array[4];
|
|
} __nv_fp8_4_e4m3;
|
|
|
|
typedef struct __CUDA_ALIGN__(4)
|
|
{
|
|
__nv_fp8x2_e4m3 array[2];
|
|
} __nv_fp8x2_x2_e4m3;
|
|
|
|
typedef struct __CUDA_ALIGN__(8)
|
|
{
|
|
__nv_fp8_e4m3 array[8];
|
|
} __nv_fp8_8_e4m3;
|
|
|
|
typedef struct __CUDA_ALIGN__(8)
|
|
{
|
|
__nv_fp8x2_e4m3 array[4];
|
|
} __nv_fp8x2_x4_e4m3;
|
|
|
|
typedef struct __CUDA_ALIGN__(16)
|
|
{
|
|
__nv_fp8_e4m3 array[16];
|
|
} __nv_fp8x16_e4m3;
|
|
#endif
|
|
|
|
// only BF16 and FP8
|
|
template <typename T, int PACK_SIZE>
|
|
struct PackType
|
|
{
|
|
using type = float;
|
|
};
|
|
|
|
#ifdef ENABLE_BF16
|
|
template <>
|
|
struct PackType<__nv_bfloat16, 2>
|
|
{
|
|
using type = __nv_bfloat16_2;
|
|
};
|
|
|
|
template <>
|
|
struct PackType<__nv_bfloat16, 4>
|
|
{
|
|
using type = __nv_bfloat164;
|
|
};
|
|
|
|
template <>
|
|
struct PackType<__nv_bfloat16, 8>
|
|
{
|
|
using type = __nv_bfloat168;
|
|
};
|
|
#endif
|
|
|
|
#ifdef ENABLE_FP8
|
|
template <>
|
|
struct PackType<__nv_fp8_e4m3, 2>
|
|
{
|
|
using type = __nv_fp8_2_e4m3;
|
|
};
|
|
|
|
template <>
|
|
struct PackType<__nv_fp8_e4m3, 4>
|
|
{
|
|
using type = __nv_fp8_4_e4m3;
|
|
};
|
|
|
|
template <>
|
|
struct PackType<__nv_fp8_e4m3, 8>
|
|
{
|
|
using type = __nv_fp8_8_e4m3;
|
|
};
|
|
#endif
|
|
|
|
__inline__ __device__ void fp8x4_e4m3_to_bfloat2(__nv_bfloat162* out1, __nv_bfloat162* out2, __nv_fp8x4_e4m3 const* in)
|
|
{
|
|
const char4 tmp_val = reinterpret_cast<char4 const*>(in)[0];
|
|
*out1 = __nv_bfloat162((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.x)[0],
|
|
(float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.y)[0]);
|
|
*out2 = __nv_bfloat162((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.z)[0],
|
|
(float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.w)[0]);
|
|
}
|
|
|
|
__inline__ __device__ __nv_bfloat162 fp8x2_e4m3_to_bfloat2(__nv_fp8x2_e4m3 const* in)
|
|
{
|
|
const char2 tmp_val = reinterpret_cast<char2 const*>(in)[0];
|
|
__nv_bfloat162 out = __nv_bfloat162((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.x)[0],
|
|
(float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.y)[0]);
|
|
return out;
|
|
}
|
|
|
|
__inline__ __device__ void fp8x4_e4m3_to_half2(half2* out1, half2* out2, __nv_fp8x4_e4m3 const* in)
|
|
{
|
|
const char4 tmp_val = reinterpret_cast<char4 const*>(in)[0];
|
|
*out1 = half2((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.x)[0],
|
|
(float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.y)[0]);
|
|
*out2 = half2((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.z)[0],
|
|
(float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.w)[0]);
|
|
}
|
|
|
|
__inline__ __device__ half2 fp8x2_e4m3_to_half2(__nv_fp8x2_e4m3 const* in)
|
|
{
|
|
const char2 tmp_val = reinterpret_cast<char2 const*>(in)[0];
|
|
half2 out = half2((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.x)[0],
|
|
(float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.y)[0]);
|
|
return out;
|
|
}
|
|
|
|
template <typename T_OUT, typename T_S, typename T_IN>
|
|
void invokeQuantizeMatrix(T_OUT* output, T_S const* input_qua_amax_ptr, T_IN const* input, int64_t numel, int64_t lda,
|
|
QuantizeMode quantize_mode, cudaStream_t stream);
|
|
|
|
template <typename T_OUT, typename T_S, typename T_IN>
|
|
void invokeDequantizeMatrix(T_OUT* output, T_S const* input_qua_amax_ptr, T_IN const* input, int64_t numel, int64_t lda,
|
|
QuantizeMode quantize_mode, cudaStream_t stream);
|
|
|
|
template <typename T_FAKE, typename T_OUT, typename T_IN>
|
|
void invokeFakeQuantize(T_OUT* dst, const T_IN* src, const int64_t numel, cudaStream_t stream);
|
|
|
|
template <typename T_S, typename T_W>
|
|
void invokeComputeFP8QuantizeScale(T_S* quant_ptr, const T_W* weights, const int64_t k, const int64_t lda,
|
|
QuantizeMode quantize_mode, cudaStream_t stream);
|
|
|
|
template <typename T_OUT, typename T_S, typename T_IN>
|
|
void invokeComputeScalesAndQuantizeMatrix(T_OUT* output, T_S* quant_ptr, const T_IN* weights, const int64_t numel,
|
|
const int64_t lda, QuantizeMode quantize_mode, cudaStream_t stream);
|
|
|
|
} // namespace common
|
|
} // namespace tensorrt_llm
|
|
#endif // ENABLE_FP8
|