TensorRT-LLMs/cpp/tensorrt_llm/common/memoryUtils.cu
Kaiyu Xie 4bb65f216f
Update TensorRT-LLM (#1274)
* Update TensorRT-LLM

---------

Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-12 18:15:52 +08:00

907 lines
37 KiB
Plaintext

/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/cudaTypeUtils.cuh"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include <curand_kernel.h>
#include <sys/stat.h>
#include <unordered_map>
namespace tensorrt_llm
{
namespace common
{
template <typename T>
void deviceMalloc(T** ptr, size_t size, bool is_random_initialize)
{
check_cuda_error(cudaMalloc((void**) (ptr), sizeof(T) * size));
if (is_random_initialize)
{
cudaRandomUniform(*ptr, size);
}
}
template void deviceMalloc(float** ptr, size_t size, bool is_random_initialize);
template void deviceMalloc(half** ptr, size_t size, bool is_random_initialize);
#ifdef ENABLE_BF16
template void deviceMalloc(__nv_bfloat16** ptr, size_t size, bool is_random_initialize);
#endif
template void deviceMalloc(uint16_t** ptr, size_t size, bool is_random_initialize);
template void deviceMalloc(int** ptr, size_t size, bool is_random_initialize);
template void deviceMalloc(bool** ptr, size_t size, bool is_random_initialize);
template void deviceMalloc(char** ptr, size_t size, bool is_random_initialize);
template void deviceMalloc(int8_t** ptr, size_t size, bool is_random_initialize);
#ifdef ENABLE_FP8
template void deviceMalloc(__nv_fp8_e4m3** ptr, size_t size, bool is_random_initialize);
#endif
template <typename T>
void deviceMemSetZero(T* ptr, size_t size)
{
check_cuda_error(cudaMemset(static_cast<void*>(ptr), 0, sizeof(T) * size));
}
template void deviceMemSetZero(float* ptr, size_t size);
template void deviceMemSetZero(half* ptr, size_t size);
template void deviceMemSetZero(int* ptr, size_t size);
template void deviceMemSetZero(uint32_t* ptr, size_t size);
template void deviceMemSetZero(bool* ptr, size_t size);
#ifdef ENABLE_FP8
template void deviceMemSetZero(__nv_fp8_e4m3* ptr, size_t size);
#endif
#ifdef ENABLE_BF16
template void deviceMemSetZero(__nv_bfloat16* ptr, size_t size);
#endif
template <typename T>
void deviceFree(T*& ptr)
{
if (ptr != NULL)
{
check_cuda_error(cudaFree(ptr));
ptr = NULL;
}
}
template void deviceFree(float*& ptr);
template void deviceFree(half*& ptr);
#ifdef ENABLE_BF16
template void deviceFree(__nv_bfloat16*& ptr);
#endif
template void deviceFree(unsigned short*& ptr);
template void deviceFree(int*& ptr);
template void deviceFree(bool*& ptr);
template void deviceFree(char*& ptr);
template void deviceFree(int8_t*& ptr);
#ifdef ENABLE_FP8
template void deviceFree(__nv_fp8_e4m3*& ptr);
#endif
template <typename T>
void deviceFill(T* devptr, size_t size, T value, cudaStream_t stream)
{
T* arr = new T[size];
std::fill(arr, arr + size, value);
check_cuda_error(cudaMemcpyAsync(devptr, arr, sizeof(T) * size, cudaMemcpyHostToDevice, stream));
delete[] arr;
}
template void deviceFill(float* devptr, size_t size, float value, cudaStream_t stream);
template void deviceFill(half* devptr, size_t size, half value, cudaStream_t stream);
#ifdef ENABLE_BF16
template void deviceFill(__nv_bfloat16* devptr, size_t size, __nv_bfloat16 value, cudaStream_t stream);
#endif
template void deviceFill(int* devptr, size_t size, int value, cudaStream_t stream);
template void deviceFill(bool* devptr, size_t size, bool value, cudaStream_t stream);
template <typename T>
void cudaD2Hcpy(T* tgt, T const* src, const size_t size)
{
check_cuda_error(cudaMemcpy(tgt, src, sizeof(T) * size, cudaMemcpyDeviceToHost));
}
template void cudaD2Hcpy(float* tgt, float const* src, size_t size);
template void cudaD2Hcpy(half* tgt, half const* src, size_t size);
#ifdef ENABLE_BF16
template void cudaD2Hcpy(__nv_bfloat16* tgt, __nv_bfloat16 const* src, size_t size);
#endif
template void cudaD2Hcpy(int* tgt, int const* src, size_t size);
template void cudaD2Hcpy(bool* tgt, bool const* src, size_t size);
#ifdef ENABLE_FP8
template void cudaD2Hcpy(__nv_fp8_e4m3* tgt, __nv_fp8_e4m3 const* src, size_t size);
#endif
template void cudaD2Hcpy(unsigned long long* tgt, unsigned long long const* src, size_t size);
template void cudaD2Hcpy(unsigned int* tgt, unsigned int const* src, size_t size);
template void cudaD2Hcpy(int8_t* tgt, int8_t const* src, size_t size);
template <typename T>
void cudaH2Dcpy(T* tgt, T const* src, const size_t size)
{
check_cuda_error(cudaMemcpy(tgt, src, sizeof(T) * size, cudaMemcpyHostToDevice));
}
template void cudaH2Dcpy(float* tgt, float const* src, size_t size);
template void cudaH2Dcpy(half* tgt, half const* src, size_t size);
#ifdef ENABLE_BF16
template void cudaH2Dcpy(__nv_bfloat16* tgt, __nv_bfloat16 const* src, size_t size);
#endif
template void cudaH2Dcpy(int* tgt, int const* src, size_t size);
template void cudaH2Dcpy(bool* tgt, bool const* src, size_t size);
#ifdef ENABLE_FP8
template void cudaH2Dcpy(__nv_fp8_e4m3* tgt, __nv_fp8_e4m3 const* src, size_t size);
#endif
template void cudaH2Dcpy(unsigned long long* tgt, unsigned long long const* src, size_t size);
template void cudaH2Dcpy(unsigned int* tgt, unsigned int const* src, size_t size);
template void cudaH2Dcpy(int8_t* tgt, int8_t const* src, size_t size);
template <typename T>
void cudaD2Dcpy(T* tgt, T const* src, const size_t size, cudaStream_t stream)
{
check_cuda_error(cudaMemcpyAsync(tgt, src, sizeof(T) * size, cudaMemcpyDeviceToDevice, stream));
}
template void cudaD2Dcpy(float* tgt, float const* src, size_t size, cudaStream_t stream);
template void cudaD2Dcpy(half* tgt, half const* src, size_t size, cudaStream_t stream);
#ifdef ENABLE_BF16
template void cudaD2Dcpy(__nv_bfloat16* tgt, __nv_bfloat16 const* src, size_t size, cudaStream_t stream);
#endif
template void cudaD2Dcpy(int* tgt, int const* src, size_t size, cudaStream_t stream);
template void cudaD2Dcpy(bool* tgt, bool const* src, size_t size, cudaStream_t stream);
template void cudaD2Dcpy(int8_t* tgt, int8_t const* src, size_t size, cudaStream_t stream);
#ifdef ENABLE_FP8
template void cudaD2Dcpy(__nv_fp8_e4m3* tgt, __nv_fp8_e4m3 const* src, size_t size, cudaStream_t stream);
#endif
template void cudaD2Dcpy(unsigned long long* tgt, unsigned long long const* src, size_t size, cudaStream_t stream);
template <typename T_OUT, typename T_IN>
__global__ void cudaCast(T_OUT* dst, T_IN* src, const size_t size)
{
for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x)
{
dst[tid] = (T_OUT) ((float) (src[tid]));
}
}
template <typename T_OUT, typename T_IN>
void invokeCudaCast(T_OUT* dst, T_IN const* const src, const size_t size, cudaStream_t stream)
{
cudaCast<<<256, 256, 0, stream>>>(dst, src, size);
}
template void invokeCudaCast(float* dst, half const* const src, const size_t size, cudaStream_t stream);
#ifdef ENABLE_BF16
template void invokeCudaCast(float* dst, __nv_bfloat16 const* const src, const size_t size, cudaStream_t stream);
template void invokeCudaCast(__nv_bfloat16* dst, float const* const src, const size_t size, cudaStream_t stream);
template void invokeCudaCast(__nv_bfloat16* dst, half const* const src, const size_t size, cudaStream_t stream);
template void invokeCudaCast(half* dst, __nv_bfloat16 const* const src, const size_t size, cudaStream_t stream);
#endif
#ifdef ENABLE_FP8
template void invokeCudaCast(float* dst, __nv_fp8_e4m3 const* const src, const size_t size, cudaStream_t stream);
template void invokeCudaCast(
__nv_bfloat16* dst, __nv_fp8_e4m3 const* const src, const size_t size, cudaStream_t stream);
template void invokeCudaCast(half* dst, __nv_fp8_e4m3 const* const src, const size_t size, cudaStream_t stream);
template void invokeCudaCast(__nv_fp8_e4m3* dst, float const* const src, const size_t size, cudaStream_t stream);
template void invokeCudaCast(
__nv_fp8_e4m3* dst, __nv_bfloat16 const* const src, const size_t size, cudaStream_t stream);
template void invokeCudaCast(__nv_fp8_e4m3* dst, half const* const src, const size_t size, cudaStream_t stream);
#endif
template <typename T>
void cudaAutoCpy(T* tgt, T const* src, const size_t size, cudaStream_t stream)
{
if (stream != NULL)
{
check_cuda_error(cudaMemcpyAsync(tgt, src, sizeof(T) * size, cudaMemcpyDefault, stream));
}
else
{
check_cuda_error(cudaMemcpy(tgt, src, sizeof(T) * size, cudaMemcpyDefault));
}
}
template void cudaAutoCpy(float* tgt, float const* src, size_t size, cudaStream_t stream);
template void cudaAutoCpy(half* tgt, half const* src, size_t size, cudaStream_t stream);
#ifdef ENABLE_BF16
template void cudaAutoCpy(__nv_bfloat16* tgt, __nv_bfloat16 const* src, size_t size, cudaStream_t stream);
#endif
template void cudaAutoCpy(int* tgt, int const* src, size_t size, cudaStream_t stream);
template void cudaAutoCpy(bool* tgt, bool const* src, size_t size, cudaStream_t stream);
template void cudaAutoCpy(int8_t* tgt, int8_t const* src, size_t size, cudaStream_t stream);
template void cudaAutoCpy(uint8_t* tgt, uint8_t const* src, size_t size, cudaStream_t stream);
template void cudaAutoCpy(uint32_t* tgt, uint32_t const* src, size_t size, cudaStream_t stream);
template void cudaAutoCpy(unsigned long long* tgt, unsigned long long const* src, size_t size, cudaStream_t stream);
template void cudaAutoCpy(unsigned long* tgt, unsigned long const* src, size_t size, cudaStream_t stream);
template void cudaAutoCpy(char* tgt, char const* src, size_t size, cudaStream_t stream);
template void cudaAutoCpy(float const** tgt, float const* const* src, size_t size, cudaStream_t stream);
template void cudaAutoCpy(half const** tgt, half const* const* src, size_t size, cudaStream_t stream);
#ifdef ENABLE_BF16
template void cudaAutoCpy(__nv_bfloat16 const** tgt, __nv_bfloat16 const* const* src, size_t size, cudaStream_t stream);
#endif
template void cudaAutoCpy(int const** tgt, int const* const* src, size_t size, cudaStream_t stream);
template void cudaAutoCpy(bool const** tgt, bool const* const* src, size_t size, cudaStream_t stream);
template void cudaAutoCpy(int8_t const** tgt, int8_t const* const* src, size_t size, cudaStream_t stream);
template void cudaAutoCpy(
unsigned long long const** tgt, unsigned long long const* const* src, size_t size, cudaStream_t stream);
template <typename T>
__global__ void cuda_random_uniform_kernel(T* buffer, const size_t size, int const seq_offset)
{
const size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
curandState_t local_state;
curand_init((unsigned long long int) 1337, idx + seq_offset, 0, &local_state);
for (size_t index = idx; index < size; index += blockDim.x * gridDim.x)
{
buffer[index] = (T) (curand_uniform(&local_state) * 0.2f - 0.1f);
}
}
template <>
__global__ void cuda_random_uniform_kernel<int>(int* buffer, const size_t size, int const seq_offset)
{
const size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
curandState_t local_state;
curand_init((float) 1337.f, idx + seq_offset, 0, &local_state);
for (size_t index = idx; index < size; index += blockDim.x * gridDim.x)
{
buffer[index] = curand(&local_state);
}
}
template <>
__global__ void cuda_random_uniform_kernel<bool>(bool* buffer, const size_t size, int const seq_offset)
{
const size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
curandState_t local_state;
curand_init((float) 1337.f, idx + seq_offset, 0, &local_state);
for (size_t index = idx; index < size; index += blockDim.x * gridDim.x)
{
buffer[index] = (curand(&local_state) % 2 == 0);
}
}
template <>
__global__ void cuda_random_uniform_kernel<char>(char* buffer, const size_t size, int const seq_offset)
{
const size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
curandState_t local_state;
curand_init((float) 1337.f, idx + seq_offset, 0, &local_state);
for (size_t index = idx; index < size; index += blockDim.x * gridDim.x)
{
buffer[index] = curand(&local_state) % 0xFF;
}
}
template <typename T>
void cudaRandomUniform(T* buffer, const size_t size)
{
static int seq_offset = 0;
cuda_random_uniform_kernel<T><<<256, 256>>>(buffer, size, seq_offset);
seq_offset += 256 * 256;
}
template void cudaRandomUniform(float* buffer, const size_t size);
template void cudaRandomUniform(half* buffer, const size_t size);
#ifdef ENABLE_BF16
template void cudaRandomUniform(__nv_bfloat16* buffer, const size_t size);
#endif
template void cudaRandomUniform(int* buffer, const size_t size);
template void cudaRandomUniform(bool* buffer, const size_t size);
template void cudaRandomUniform(char* buffer, const size_t size);
#ifdef ENABLE_FP8
template void cudaRandomUniform(__nv_fp8_e4m3* buffer, const size_t size);
#endif
// loads data from binary file. If it succeeds, returns a non-empty vector. If loading fails or
// the product of the elements in shape is 0, this function will return an empty vector.
template <typename T>
std::vector<T> loadWeightFromBinHelper(std::vector<size_t> shape, std::string filename)
{
if (shape.size() > 2)
{
printf("[ERROR] shape should have less than two dims \n");
return std::vector<T>();
}
size_t dim0 = shape[0], dim1 = 1;
if (shape.size() == 2)
{
dim1 = shape[1];
}
size_t size = dim0 * dim1;
if (size == 0)
{
TLLM_LOG_WARNING("shape is zero, skip loading weight from file %s \n", filename.c_str());
return std::vector<T>();
}
std::vector<T> host_array(size);
std::ifstream in(filename, std::ios::in | std::ios::binary);
if (!in.is_open())
{
TLLM_LOG_WARNING("file %s cannot be opened, loading model fails! \n", filename.c_str());
return std::vector<T>();
}
size_t loaded_data_size = sizeof(T) * size;
in.seekg(0, in.end);
in.seekg(0, in.beg);
TLLM_LOG_DEBUG("Read " + std::to_string(loaded_data_size) + " bytes from " + filename);
in.read((char*) host_array.data(), loaded_data_size);
size_t in_get_size = in.gcount();
if (in_get_size != loaded_data_size)
{
TLLM_LOG_WARNING("file %s only has %ld, but request %ld, loading model fails! \n", filename.c_str(),
in_get_size, loaded_data_size);
return std::vector<T>();
}
in.close();
// If we succeed, return an array with values.
return host_array;
}
template <typename T, typename T_IN>
int loadWeightFromBinFunc(T* ptr, std::vector<size_t> shape, std::string filename)
{
std::vector<T_IN> host_array = loadWeightFromBinHelper<T_IN>(shape, filename);
if (host_array.empty())
{
return 0;
}
if (std::is_same<T, T_IN>::value == true)
{
cudaH2Dcpy(ptr, (T*) host_array.data(), host_array.size());
}
else
{
T_IN* ptr_2 = nullptr;
deviceMalloc(&ptr_2, host_array.size(), false);
cudaH2Dcpy(ptr_2, host_array.data(), host_array.size());
invokeCudaD2DcpyConvert(ptr, ptr_2, host_array.size());
deviceFree(ptr_2);
}
return 0;
}
template int loadWeightFromBinFunc<float, float>(float* ptr, std::vector<size_t> shape, std::string filename);
template int loadWeightFromBinFunc<half, float>(half* ptr, std::vector<size_t> shape, std::string filename);
template int loadWeightFromBinFunc<float, half>(float* ptr, std::vector<size_t> shape, std::string filename);
template int loadWeightFromBinFunc<half, half>(half* ptr, std::vector<size_t> shape, std::string filename);
template int loadWeightFromBinFunc<int8_t, int8_t>(int8_t* ptr, std::vector<size_t> shape, std::string filename);
#ifdef ENABLE_BF16
template int loadWeightFromBinFunc<__nv_bfloat16, float>(
__nv_bfloat16* ptr, std::vector<size_t> shape, std::string filename);
template int loadWeightFromBinFunc<__nv_bfloat16, half>(
__nv_bfloat16* ptr, std::vector<size_t> shape, std::string filename);
template int loadWeightFromBinFunc<float, __nv_bfloat16>(float* ptr, std::vector<size_t> shape, std::string filename);
template int loadWeightFromBinFunc<half, __nv_bfloat16>(half* ptr, std::vector<size_t> shape, std::string filename);
template int loadWeightFromBinFunc<__nv_bfloat16, __nv_bfloat16>(
__nv_bfloat16* ptr, std::vector<size_t> shape, std::string filename);
#endif // ENABLE_BF16
template int loadWeightFromBinFunc<int, int>(int* ptr, std::vector<size_t> shape, std::string filename);
#ifdef ENABLE_FP8
template int loadWeightFromBinFunc<__nv_fp8_e4m3, float>(
__nv_fp8_e4m3* ptr, std::vector<size_t> shape, std::string filename);
#endif // ENABLE_FP8
template <typename T>
int loadWeightFromBin(T* ptr, std::vector<size_t> shape, std::string filename, TRTLLMCudaDataType model_file_type)
{
switch (model_file_type)
{
case TRTLLMCudaDataType::FP32: loadWeightFromBinFunc<T, float>(ptr, shape, filename); break;
case TRTLLMCudaDataType::FP16: loadWeightFromBinFunc<T, half>(ptr, shape, filename); break;
case TRTLLMCudaDataType::INT8: loadWeightFromBinFunc<T, int8_t>(ptr, shape, filename); break;
#ifdef ENABLE_BF16
case TRTLLMCudaDataType::BF16: loadWeightFromBinFunc<T, __nv_bfloat16>(ptr, shape, filename); break;
#endif
#ifdef ENABLE_FP8
case TRTLLMCudaDataType::FP8: loadWeightFromBinFunc<T, float>(ptr, shape, filename); break;
#endif
default: TLLM_LOG_ERROR("Does not support TRTLLMCudaDataType=%d", model_file_type); TLLM_CHECK(false);
}
return 0;
}
template <>
int loadWeightFromBin(int* ptr, std::vector<size_t> shape, std::string filename, TRTLLMCudaDataType model_file_type)
{
loadWeightFromBinFunc<int, int>(ptr, shape, filename);
return 0;
}
template int loadWeightFromBin(
float* ptr, std::vector<size_t> shape, std::string filename, TRTLLMCudaDataType model_file_type);
template int loadWeightFromBin(
half* ptr, std::vector<size_t> shape, std::string filename, TRTLLMCudaDataType model_file_type);
template int loadWeightFromBin(
int8_t* ptr, std::vector<size_t> shape, std::string filename, TRTLLMCudaDataType model_file_type);
#ifdef ENABLE_BF16
template int loadWeightFromBin(
__nv_bfloat16* ptr, std::vector<size_t> shape, std::string filename, TRTLLMCudaDataType model_file_type);
#endif
#ifdef ENABLE_FP8
template int loadWeightFromBin(
__nv_fp8_e4m3* ptr, std::vector<size_t> shape, std::string filename, TRTLLMCudaDataType model_file_type);
#endif
template int loadWeightFromBin(
int* ptr, std::vector<size_t> shape, std::string filename, TRTLLMCudaDataType model_file_type);
template <typename T_IN, typename T_OUT>
__global__ void cudaD2DcpyConvert(T_OUT* dst, const T_IN* src, const size_t size)
{
for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x)
{
dst[tid] = cuda_cast<T_OUT>(src[tid]);
}
}
template <typename T_IN, typename T_OUT>
void invokeCudaD2DcpyConvert(T_OUT* tgt, const T_IN* src, const size_t size, cudaStream_t stream)
{
cudaD2DcpyConvert<<<256, 256, 0, stream>>>(tgt, src, size);
}
template void invokeCudaD2DcpyConvert(int8_t* tgt, float const* src, const size_t size, cudaStream_t stream);
template void invokeCudaD2DcpyConvert(float* tgt, int8_t const* src, const size_t size, cudaStream_t stream);
template void invokeCudaD2DcpyConvert(float* tgt, int const* src, const size_t size, cudaStream_t stream);
template void invokeCudaD2DcpyConvert(half* tgt, int const* src, const size_t size, cudaStream_t stream);
template void invokeCudaD2DcpyConvert(float* tgt, float const* src, const size_t size, cudaStream_t stream);
template void invokeCudaD2DcpyConvert(half* tgt, float const* src, const size_t size, cudaStream_t stream);
template void invokeCudaD2DcpyConvert(float* tgt, half const* src, const size_t size, cudaStream_t stream);
template void invokeCudaD2DcpyConvert(uint32_t* tgt, int const* src, const size_t size, cudaStream_t stream);
template void invokeCudaD2DcpyConvert(int* tgt, uint32_t const* src, const size_t size, cudaStream_t stream);
template void invokeCudaD2DcpyConvert(int* tgt, float const* src, const size_t size, cudaStream_t stream);
template void invokeCudaD2DcpyConvert(int* tgt, half const* src, const size_t size, cudaStream_t stream);
#ifdef ENABLE_BF16
template void invokeCudaD2DcpyConvert(__nv_bfloat16* tgt, float const* src, const size_t size, cudaStream_t stream);
template void invokeCudaD2DcpyConvert(__nv_bfloat16* tgt, int const* src, const size_t size, cudaStream_t stream);
template void invokeCudaD2DcpyConvert(float* tgt, __nv_bfloat16 const* src, const size_t size, cudaStream_t stream);
template void invokeCudaD2DcpyConvert(int* tgt, __nv_bfloat16 const* src, const size_t size, cudaStream_t stream);
#endif // ENABLE_BF16
template <typename T_IN, typename T_OUT>
__global__ void cudaD2DScaleCpyConvert(
T_OUT* dst, const T_IN* src, float const* scale, bool invert_scale, const size_t size)
{
float const scale_value = invert_scale ? 1.0f / scale[0] : scale[0];
for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x)
{
dst[tid] = cuda_cast<T_OUT>(cuda_cast<float>(src[tid]) * scale_value);
}
}
template <typename T_IN, typename T_OUT>
void invokeCudaD2DScaleCpyConvert(
T_OUT* tgt, const T_IN* src, float const* scale, bool invert_scale, const size_t size, cudaStream_t stream)
{
cudaD2DScaleCpyConvert<<<256, 256, 0, stream>>>(tgt, src, scale, invert_scale, size);
}
// clang-format off
template void invokeCudaD2DScaleCpyConvert(float* tgt, const int32_t* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream);
template void invokeCudaD2DScaleCpyConvert(int32_t* tgt, const float* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream);
template void invokeCudaD2DScaleCpyConvert(half* tgt, const int32_t* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream);
template void invokeCudaD2DScaleCpyConvert(int32_t* tgt, const half* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream);
#ifdef ENABLE_BF16
template void invokeCudaD2DScaleCpyConvert(__nv_bfloat16* tgt, const int32_t* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream);
template void invokeCudaD2DScaleCpyConvert(int32_t* tgt, const __nv_bfloat16* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream);
#endif // ENABLE_BF16
#ifdef ENABLE_FP8
template void invokeCudaD2DScaleCpyConvert(float* tgt, const __nv_fp8_e4m3* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream);
#endif // ENABLE_FP8
// clang-format on
void invokeCudaD2DcpyHalf2Float(float* dst, half* src, const size_t size, cudaStream_t stream)
{
invokeCudaD2DcpyConvert(dst, src, size, stream);
}
void invokeCudaD2DcpyFloat2Half(half* dst, float* src, const size_t size, cudaStream_t stream)
{
invokeCudaD2DcpyConvert(dst, src, size, stream);
}
template <typename T>
void saveToBinary(T const* ptr, const size_t size, std::string filename)
{
std::vector<T> h_ptr(size);
cudaD2Hcpy(h_ptr.data(), ptr, size);
std::vector<float> float_ptr(size);
for (size_t i = 0; i < size; i++)
{
float_ptr[i] = (float) h_ptr[i];
}
std::ofstream out(filename, std::ios::out | std::ios::binary);
TLLM_CHECK_WITH_INFO(out.is_open(), "Fail to open file " + filename);
out.write((char*) float_ptr.data(), size * sizeof(float));
}
template void saveToBinary(float const* ptr, const size_t size, std::string filename);
template void saveToBinary(half const* ptr, const size_t size, std::string filename);
#ifdef ENABLE_BF16
template void saveToBinary(__nv_bfloat16 const* ptr, const size_t size, std::string filename);
#endif // ENABLE_BF16
template <>
void saveToBinary(int const* ptr, const size_t size, std::string filename)
{
std::vector<int> h_ptr(size);
cudaD2Hcpy(h_ptr.data(), ptr, size);
std::ofstream out(filename, std::ios::out | std::ios::binary);
TLLM_CHECK_WITH_INFO(out.is_open(), "Fail to open file " + filename);
out.write((char*) h_ptr.data(), size * sizeof(int));
}
template <typename T_IN, typename T_fake_type>
__global__ void fakeCast(T_IN* input_ptr, const size_t size)
{
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += blockDim.x * gridDim.x)
{
T_fake_type tmp_val = (T_fake_type) ((float) input_ptr[i]);
input_ptr[i] = (T_IN) ((float) tmp_val);
}
}
template <typename T_IN, typename T_fake_type>
void invokeFakeCast(T_IN* input_ptr, const size_t size, cudaStream_t stream)
{
dim3 block(256);
dim3 grid((size + 255) / 256);
fakeCast<T_IN, T_fake_type><<<grid, block, 0, stream>>>(input_ptr, size);
}
#ifdef ENABLE_FP8
__global__ void cudaD2Dcpyfp82Float(float* dst, __nv_fp8_e4m3* src, const size_t size)
{
for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x)
{
dst[tid] = (float) (src[tid]);
}
}
void invokeCudaD2Dcpyfp82Float(float* dst, __nv_fp8_e4m3* src, const size_t size, cudaStream_t stream)
{
cudaD2Dcpyfp82Float<<<256, 256, 0, stream>>>(dst, src, size);
}
__global__ void cudaD2Dcpyfp82Half(half* dst, __nv_fp8_e4m3* src, const size_t size)
{
for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x)
{
dst[tid] = (half) ((float) (src[tid]));
}
}
void invokeCudaD2Dcpyfp82Half(half* dst, __nv_fp8_e4m3* src, const size_t size, cudaStream_t stream)
{
cudaD2Dcpyfp82Half<<<256, 256, 0, stream>>>(dst, src, size);
}
__global__ void cudaD2DcpyFloat2fp8(__nv_fp8_e4m3* dst, float* src, const size_t size)
{
for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x)
{
dst[tid] = (__nv_fp8_e4m3) src[tid];
}
}
void invokeCudaD2DcpyFloat2fp8(__nv_fp8_e4m3* dst, float* src, const size_t size, cudaStream_t stream)
{
cudaD2DcpyFloat2fp8<<<256, 256, 0, stream>>>(dst, src, size);
}
__global__ void cudaD2DcpyHalf2fp8(__nv_fp8_e4m3* dst, half* src, const size_t size)
{
for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x)
{
dst[tid] = (__nv_fp8_e4m3) src[tid];
}
}
void invokeCudaD2DcpyHalf2fp8(__nv_fp8_e4m3* dst, half* src, const size_t size, cudaStream_t stream)
{
cudaD2DcpyHalf2fp8<<<256, 256, 0, stream>>>(dst, src, size);
}
__global__ void cudaD2DcpyBfloat2fp8(__nv_fp8_e4m3* dst, __nv_bfloat16* src, const size_t size)
{
for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x)
{
dst[tid] = (__nv_fp8_e4m3) src[tid];
}
}
void invokeCudaD2DcpyBfloat2fp8(__nv_fp8_e4m3* dst, __nv_bfloat16* src, const size_t size, cudaStream_t stream)
{
cudaD2DcpyBfloat2fp8<<<256, 256, 0, stream>>>(dst, src, size);
}
#endif // ENABLE_FP8
template <typename T_OUT, typename T_IN>
__global__ void transpose(T_OUT* dst, T_IN* src, const size_t dim0, const size_t dim1)
{
for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < dim0 * dim1; tid += blockDim.x * gridDim.x)
{
const size_t src_col_id = tid % dim1;
const size_t src_row_id = tid / dim1;
dst[src_col_id * dim0 + src_row_id] = (T_OUT) (src[tid]);
}
}
template <typename T>
void invokeInPlaceTranspose(T* data, T* workspace, const size_t dim0, const size_t dim1)
{
// copy data to workspace, and then transpose from workspace to data
cudaD2Dcpy(workspace, data, dim0 * dim1);
transpose<<<256, 256>>>(data, workspace, dim0, dim1);
}
#ifdef ENABLE_FP8
template void invokeInPlaceTranspose(
__nv_fp8_e4m3* data, __nv_fp8_e4m3* workspace, const size_t dim0, const size_t dim1);
#endif // ENABLE_FP8
#ifdef ENABLE_BF16
template void invokeInPlaceTranspose(
__nv_bfloat16* data, __nv_bfloat16* workspace, const size_t dim0, const size_t dim1);
#endif // ENABLE_BF16
template void invokeInPlaceTranspose(float* data, float* workspace, const size_t dim0, const size_t dim1);
template <typename T_OUT, typename T_IN>
__global__ void transpose0213(
T_OUT* dst, T_IN* src, const size_t dim0, const size_t dim1, const size_t dim2, const size_t dim3)
{
// src permutation: [0, 1, 2, 3]
// dst permutation: [0, 2, 1, 3]
for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < dim0 * dim1 * dim2 * dim3;
tid += blockDim.x * gridDim.x)
{
size_t tmp_idx = tid;
const size_t dim_3_idx = tmp_idx % dim3;
tmp_idx = (tmp_idx - dim_3_idx) / dim3;
const size_t dim_2_idx = tmp_idx % dim2;
tmp_idx = (tmp_idx - dim_2_idx) / dim2;
const size_t dim_1_idx = tmp_idx % dim1;
tmp_idx = (tmp_idx - dim_1_idx) / dim1;
const size_t dim_0_idx = tmp_idx % dim0;
dst[dim_0_idx * dim1 * dim2 * dim3 + dim_2_idx * dim1 * dim3 + dim_1_idx * dim3 + dim_3_idx] = src[tid];
}
}
template <typename T>
void invokeInPlaceTranspose0213(
T* data, T* workspace, const size_t dim0, const size_t dim1, const size_t dim2, const size_t dim3)
{
// copy data to workspace, and then transpose from workspace to data
// Note that this kernel is used for pre-processing and not very efficient.
cudaD2Dcpy(workspace, data, dim0 * dim1 * dim2 * dim3);
transpose0213<<<256, 256>>>(data, workspace, dim0, dim1, dim2, dim3);
}
#ifdef ENABLE_FP8
template void invokeInPlaceTranspose0213(__nv_fp8_e4m3* data, __nv_fp8_e4m3* workspace, const size_t dim0,
const size_t dim1, const size_t dim2, const size_t dim3);
#endif // ENABLE_FP8
#ifdef ENABLE_BF16
template void invokeInPlaceTranspose0213(__nv_bfloat16* data, __nv_bfloat16* workspace, const size_t dim0,
const size_t dim1, const size_t dim2, const size_t dim3);
#endif // ENABLE_BF16
template void invokeInPlaceTranspose0213(
float* data, float* workspace, const size_t dim0, const size_t dim1, const size_t dim2, const size_t dim3);
template <typename T_OUT, typename T_IN>
__global__ void transpose102(T_OUT* dst, T_IN* src, const size_t dim0, const size_t dim1, const size_t dim2)
{
// src permutation: [0, 1, 2]
// dst permutation: [1, 0, 2]
for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < dim0 * dim1 * dim2; tid += blockDim.x * gridDim.x)
{
size_t tmp_idx = tid;
const size_t dim_2_idx = tmp_idx % dim2;
tmp_idx = (tmp_idx - dim_2_idx) / dim2;
const size_t dim_1_idx = tmp_idx % dim1;
tmp_idx = (tmp_idx - dim_1_idx) / dim1;
const size_t dim_0_idx = tmp_idx % dim0;
dst[dim_1_idx * dim0 * dim2 + dim_0_idx * dim2 + dim_2_idx] = src[tid];
}
}
template <typename T>
void invokeInPlaceTranspose102(T* data, T* workspace, const size_t dim0, const size_t dim1, const size_t dim2)
{
// copy data to workspace, and then transpose from workspace to data
// Note that this kernel is used for pre-processing and not very efficient.
cudaD2Dcpy(workspace, data, dim0 * dim1 * dim2);
transpose102<<<256, 256>>>(data, workspace, dim0, dim1, dim2);
}
#ifdef ENABLE_FP8
template void invokeInPlaceTranspose102(
__nv_fp8_e4m3* data, __nv_fp8_e4m3* workspace, const size_t dim0, const size_t dim1, const size_t dim2);
#endif // ENABLE_FP8
#ifdef ENABLE_BF16
template void invokeInPlaceTranspose102(
__nv_bfloat16* data, __nv_bfloat16* workspace, const size_t dim0, const size_t dim1, const size_t dim2);
#endif // ENABLE_BF16
template void invokeInPlaceTranspose102(
float* data, float* workspace, const size_t dim0, const size_t dim1, const size_t dim2);
template <typename T>
void __global__ multiplyScale(T* tensor, float scale, const size_t size)
{
for (size_t index = threadIdx.x + blockIdx.x * blockDim.x; index < size; index += blockDim.x * gridDim.x)
{
tensor[index] = (T) (((float) tensor[index]) * scale);
}
}
template <typename T>
void invokeMultiplyScale(T* tensor, float scale, const size_t size, cudaStream_t stream)
{
int block = 256;
int grid = (size + 255) / 256;
multiplyScale<<<grid, block, 0, stream>>>(tensor, scale, size);
}
template void invokeMultiplyScale(float* tensor, float scale, const size_t size, cudaStream_t stream);
template void invokeMultiplyScale(half* tensor, float scale, const size_t size, cudaStream_t stream);
#ifdef ENABLE_BF16
template void invokeMultiplyScale(__nv_bfloat16* tensor, float scale, const size_t size, cudaStream_t stream);
#endif
#ifdef ENABLE_FP8
template void invokeMultiplyScale(__nv_fp8_e4m3* tensor, float scale, const size_t size, cudaStream_t stream);
#endif
template <typename T>
void __global__ divideScale(T* tensor, float scale, const size_t size)
{
for (size_t index = threadIdx.x + blockIdx.x * blockDim.x; index < size; index += blockDim.x * gridDim.x)
{
tensor[index] = (T) (((float) tensor[index]) / scale);
}
}
template <typename T>
void invokeDivideScale(T* tensor, float scale, const size_t size, cudaStream_t stream)
{
int block = 256;
int grid = (size + 255) / 256;
divideScale<<<grid, block, 0, stream>>>(tensor, scale, size);
}
template void invokeDivideScale(float* tensor, float scale, const size_t size, cudaStream_t stream);
template void invokeDivideScale(half* tensor, float scale, const size_t size, cudaStream_t stream);
#ifdef ENABLE_BF16
template void invokeDivideScale(__nv_bfloat16* tensor, float scale, const size_t size, cudaStream_t stream);
#endif
#ifdef ENABLE_FP8
template void invokeDivideScale(__nv_fp8_e4m3* tensor, float scale, const size_t size, cudaStream_t stream);
#endif
#ifdef ENABLE_BF16
template void invokeFakeCast<float, __nv_bfloat16>(float* input_ptr, const size_t size, cudaStream_t stream);
template void invokeFakeCast<__nv_bfloat16, __nv_bfloat16>(
__nv_bfloat16* input_ptr, const size_t size, cudaStream_t stream);
template void invokeFakeCast<half, __nv_bfloat16>(half* input_ptr, const size_t size, cudaStream_t stream);
#endif
template void invokeFakeCast<float, half>(float* input_ptr, const size_t size, cudaStream_t stream);
template void invokeFakeCast<float, float>(float* input_ptr, const size_t size, cudaStream_t stream);
#ifdef ENABLE_FP8
template void invokeFakeCast<float, __nv_fp8_e4m3>(float* input_ptr, const size_t size, cudaStream_t stream);
template void invokeFakeCast<half, __nv_fp8_e4m3>(half* input_ptr, const size_t size, cudaStream_t stream);
template void invokeFakeCast<__nv_bfloat16, __nv_fp8_e4m3>(
__nv_bfloat16* input_ptr, const size_t size, cudaStream_t stream);
#endif
size_t cuda_datatype_size(TRTLLMCudaDataType dt)
{
static const std::unordered_map<TRTLLMCudaDataType, size_t> sizes{
{TRTLLMCudaDataType::FP32, sizeof(float)}, {TRTLLMCudaDataType::FP16, sizeof(half)}
#ifdef ENABLE_BF16
,
{TRTLLMCudaDataType::BF16, sizeof(__nv_bfloat16)}
#endif
};
return sizes.at(dt);
}
template <typename T>
__global__ void check_range(T const* buffer, size_t size, T min, T max, bool* d_within_range)
{
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += blockDim.x * gridDim.x)
{
const T val = buffer[i];
if (val < min || val > max)
{
*d_within_range = false;
}
}
}
template <typename T>
bool invokeCheckRange(T const* buffer, const size_t size, T min, T max, bool* d_within_range, cudaStream_t stream)
{
cudaMemsetAsync(d_within_range, true, sizeof(bool), stream);
dim3 block(256);
dim3 grid((size + 255) / 256);
check_range<T><<<grid, block, 0, stream>>>(buffer, size, min, max, d_within_range);
bool result;
cudaD2Hcpy(&result, d_within_range, 1);
return result;
}
template bool invokeCheckRange<int>(
int const* buffer, const size_t size, int min, int max, bool* d_within_range, cudaStream_t stream);
/*
* Determine the total workspace size based on a vector containing multiple variable sizes.
*/
size_t calcAlignedSize(std::vector<size_t> const& sizes, const size_t ALIGN_BYTES)
{
const size_t ALIGN_MASK = ~(ALIGN_BYTES - 1);
// Check ALIGN_BYTES is a power of 2
assert((ALIGN_BYTES & (ALIGN_BYTES - 1)) == 0);
size_t total = 0;
for (auto sz : sizes)
{
total += (sz + ALIGN_BYTES - 1) & ALIGN_MASK;
}
// We add extra "ALIGN_BYTES - 1" bytes in case the start address passed to the function calcAlignedPointers() is
// not aligned.
return total + ALIGN_BYTES - 1;
}
/*
* Given the address of the workspace and the vector containing multiple variable sizes, calculate the start addresses
* of each variable.
*/
void calcAlignedPointers(
std::vector<void*>& outPtrs, void const* p, std::vector<size_t> const& sizes, size_t ALIGN_BYTES)
{
const size_t ALIGN_MASK = ~(ALIGN_BYTES - 1);
// Check ALIGN_BYTES is a power of 2
assert((ALIGN_BYTES & (ALIGN_BYTES - 1)) == 0);
// In case the start address is not aligned
char* ptr = reinterpret_cast<char*>((reinterpret_cast<size_t>(p) + ALIGN_BYTES - 1) & ALIGN_MASK);
outPtrs.reserve(sizes.size());
for (auto sz : sizes)
{
outPtrs.push_back(ptr);
ptr += (sz + ALIGN_BYTES - 1) & ALIGN_MASK;
}
}
} // namespace common
} // namespace tensorrt_llm