mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
* Update TensorRT-LLM --------- Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
108 lines
5.2 KiB
C++
108 lines
5.2 KiB
C++
/*
|
|
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/kernels/decodingCommon.h"
|
|
#include <cuda_runtime.h>
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace kernels
|
|
{
|
|
|
|
// In original beam search implementation, if a beam is finished, we set it as
|
|
// finished and only continue to do beam search on remain beams (namely,
|
|
// beam_width - 1 beams in next step)
|
|
//
|
|
// In this implementation, when a beam is finished, we trace the path and record
|
|
// it in output_ids_tgt, and also record the normalized scores. And the beam
|
|
// search continue to use `beam_width` beams in next step.
|
|
//
|
|
// After we collect `beam_width` beams, we will sort them by their norm_scores.
|
|
struct BeamHypotheses
|
|
{
|
|
// BS: batch_size
|
|
// BM: beam_width
|
|
// mSL: max_seq_length
|
|
// %%: parameter name when we call [generation.py] dynamic_decoder.forward
|
|
|
|
// Pointers initialized in these two functions:
|
|
// [gptDecoder.cpp] GptDecoder<T>::forward or [dynamicDecodeOp.cpp] FtDynamicDecode<T>::forward
|
|
bool* is_done{nullptr}; // [BS] %% self.beam_hyps_is_done
|
|
float* cum_log_probs{nullptr}; // [BS, BM*2] %% self.beam_hyps_cum_log_probs
|
|
float* log_probs{nullptr}; // [BS, BM*2, mSL] %% self.beam_hyps_log_probs
|
|
float* min_normed_scores{nullptr}; // [BS] %% self.beam_hyps_min_normed_scores
|
|
float* normed_scores{nullptr}; // [BS, BM*2] %% self.beam_hyps_normed_scores
|
|
int* num_beams{nullptr}; // [BS] %% self.beam_hyps_num_beams
|
|
int* output_ids_tgt{nullptr}; // [BS, BM*2, mSL] %% self.beam_hyps_is_done
|
|
int* sequence_lengths_tgt{nullptr}; // [BS, BM*2] %% self.beam_hyps_sequence_lengths_tgt
|
|
int const* input_lengths{nullptr}; // [BS*BM] %% context_length
|
|
|
|
// Pointers initialized in [onlineBeamSearchLayer.cu] invokeSoftMax:
|
|
int const* end_ids{nullptr}; // [BS*BM] %% self.end_ids
|
|
FinishedState* finished; // [BS*BM] %% self.finished
|
|
float* cum_log_probs_src{nullptr}; // [BS, BM] %% self.cum_log_probs
|
|
float* log_probs_src{nullptr}; // [mSL, BS, BM] %% self.log_probs_tiled
|
|
int* sequence_lengths_src{nullptr}; // [BS*BM] %% self.sequence_length_buffer
|
|
int** output_ids_tgt_ptr{nullptr}; // [BS][BM, mSL] from [dynamicDecodeLayer.cpp]
|
|
int** parent_ids_tgt_ptr{nullptr}; // [BS][BM, mSL] from [dynamicDecodeLayer.cpp]
|
|
|
|
float* diversity_rates{nullptr}; // [BS] from SamplingConfig
|
|
float* length_penalties{nullptr}; // [BS] from SamplingConfig
|
|
int* early_stoppings{nullptr}; // [BS] from SamplingConfig
|
|
|
|
// Pointers for function gatherTree
|
|
int const* output_ids_src{nullptr}; //
|
|
int const* parent_ids_src{nullptr}; //
|
|
|
|
// Scalar values
|
|
bool is_return_normed_score{true}; // return normed_cum_log_probs or cum_log_probs, always be true now
|
|
int batch_size{0}; //
|
|
int beam_width{0}; //
|
|
int ite{0}; // index of local_batch, always be 0 if pp_size==1
|
|
int local_batch_size{0}; //
|
|
int max_seq_len{0}; //
|
|
int step{0}; // only used in [beamSearchTopkKernels.cu], always be 0 in [onlineSoftmaxBeamsearchKernels*.cu.h]
|
|
int vocab_size{0}; // vocab_size_padded
|
|
};
|
|
|
|
template <typename T>
|
|
void invokeTopkBeamSearch(void* workspace, size_t& workspace_size, T* log_probs, int* ids, BeamHypotheses* beam_hyps,
|
|
bool const* finished, int const* sequence_lengths, int const batch_size, int const beam_width,
|
|
int const vocab_size_padded_, const T diversity_rate, float const length_penalty, int const* end_ids,
|
|
cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void invokeTileEncoderResults(T* tiled_encoder_output, int* tiled_encoder_sequence_length, T const* encoder_output,
|
|
int const* encoder_sequence_length, const size_t batch_size, const size_t beam_width, const size_t mem_max_seq_len,
|
|
const size_t d_model, cudaStream_t stream);
|
|
|
|
void invokeInsertUnfinishedPath(BeamHypotheses beam_hyps, FinishedState const* finished, float const* cum_log_probs,
|
|
int const batch_size, int const beam_width, cudaStream_t stream);
|
|
|
|
void invokeCopyBatchMajorToGeneralPtr(
|
|
void* output_ids_ptr, int* output_ids, int batch_size, int beam_width, int max_seq_len, cudaStream_t stream);
|
|
|
|
void invokeCopyGeneralPtrToBatchMajor(
|
|
int* output_ids, void* output_ids_ptr, int batch_size, int beam_width, int max_seq_len, cudaStream_t stream);
|
|
|
|
void invokeSeqlenMajorToBatchMajor(
|
|
int* batchMajoredIds, int* seqlenMajorIds, int batch_size, int beam_width, int max_seq_len, cudaStream_t stream);
|
|
|
|
} // namespace kernels
|
|
} // namespace tensorrt_llm
|