TensorRT-LLMs/cpp/tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQARunner.cpp
Kaiyu Xie 4bb65f216f
Update TensorRT-LLM (#1274)
* Update TensorRT-LLM

---------

Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-12 18:15:52 +08:00

117 lines
3.7 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "decoderXQARunner.h"
#include <assert.h>
#include <string.h>
#include <mutex>
#include <unordered_map>
#include "tensorrt_llm/common/cudaDriverWrapper.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/envUtils.h"
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/cubin/xqa_kernel_cubin.h"
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAConstants.h"
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImpl.h"
#include "tensorrt_llm/kernels/kvCacheUtils.h"
#include "tensorrt_llm/kernels/unfusedAttentionKernels.h"
namespace tensorrt_llm
{
namespace kernels
{
DecoderXQARunner::DecoderXQARunner(
const XQADataType data_type, int num_heads, int num_kv_heads, int head_size, bool multi_block_mode)
: mPrepareCalled(false)
, mDataType(data_type)
, mNumHeads(num_heads)
, mNumKVHeads(num_kv_heads)
, mHeadSize(head_size)
, mMultiBlockMode(multi_block_mode)
{
mMultiProcessorCount = tensorrt_llm::common::getMultiProcessorCount();
// The initialization of mImpl must be the last line because *this needs to be fully initialized before calling
// DecoderXQAImpl::create().
mImpl = DecoderXQAImpl::create(this, DecoderXQAImpl::ImplType::kPrecompiled);
}
DecoderXQARunner::~DecoderXQARunner() = default;
namespace
{
template <typename T>
constexpr inline T divUp(T a, T b)
{
return (a + b - 1) / b;
}
template <typename T>
constexpr inline T roundUp(T a, T b)
{
return divUp(a, b) * b;
}
} // namespace
size_t DecoderXQARunner::getWorkspaceSize(int max_batch_beam_size)
{
size_t workspace_size = 0;
if (mMultiBlockMode)
{
int workspaces[4];
int const max_num_request = max_batch_beam_size;
uint32_t const nbSeq = mNumKVHeads * max_num_request;
uint32_t const nbSubSeq = kMaxNbCtaPerKVHeadFactor * nbSeq;
int group_size = mNumHeads / mNumKVHeads;
workspaces[0] = sizeof(uint32_t) * nbSeq;
workspaces[1] = sizeof(float) * roundUp(group_size, 32) * nbSubSeq;
workspaces[2] = sizeof(float) * roundUp(group_size, 32) * nbSubSeq;
workspaces[3] = sizeof(__half) * group_size * mHeadSize * nbSubSeq;
workspace_size = roundUp(workspaces[0], 128) + roundUp(workspaces[1], 128) + roundUp(workspaces[2], 128)
+ roundUp(workspaces[3], 128);
}
return workspace_size;
}
bool DecoderXQARunner::shouldUseImpl(XQAParams const& xqaParams)
{
return mImpl->shouldUse(xqaParams);
}
void DecoderXQARunner::prepareForRun(XQAParams const& xqa_params)
{
return mImpl->prepare(xqa_params);
}
template <typename KVCacheBuffer>
void DecoderXQARunner::run(XQAParams const& xqa_params, KVCacheBuffer& kv_cache_buffer, cudaStream_t const& stream)
{
return mImpl->run(xqa_params, kv_cache_buffer, mLaunchGridBlockCache, stream);
}
template void DecoderXQARunner::run(
XQAParams const& xqa_params, KVLinearBuffer& kv_linear_buffer, cudaStream_t const& stream);
template void DecoderXQARunner::run(
XQAParams const& xqa_params, KVBlockArray& kv_block_array, cudaStream_t const& stream);
} // namespace kernels
} // namespace tensorrt_llm