mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
206 lines
7.2 KiB
C++
206 lines
7.2 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <cstdint>
|
|
#include <curand_kernel.h>
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace kernels
|
|
{
|
|
|
|
class FinishedState
|
|
{
|
|
public:
|
|
static auto constexpr empty()
|
|
{
|
|
return FinishedState{0};
|
|
}
|
|
|
|
static auto constexpr finished()
|
|
{
|
|
return FinishedState{kFinished};
|
|
}
|
|
|
|
static auto constexpr skipDecoding()
|
|
{
|
|
return FinishedState{kSkipDecoding};
|
|
}
|
|
|
|
static auto constexpr finishedEOS()
|
|
{
|
|
return FinishedState{kFinishedEos};
|
|
}
|
|
|
|
static auto constexpr finishedMaxLength()
|
|
{
|
|
return FinishedState{kFinishedMaxLength};
|
|
}
|
|
|
|
static auto constexpr finishedStopWords()
|
|
{
|
|
return FinishedState{kFinishedStopWords};
|
|
}
|
|
|
|
__host__ __device__ void constexpr setFinishedEOS()
|
|
{
|
|
mState |= kFinishedEos;
|
|
}
|
|
|
|
__host__ __device__ bool constexpr isFinishedEOS()
|
|
{
|
|
return anyBitSet(kFinishedEos);
|
|
}
|
|
|
|
__host__ __device__ void constexpr setFinishedStopWords()
|
|
{
|
|
mState |= kFinishedStopWords;
|
|
}
|
|
|
|
__host__ __device__ bool constexpr isFinishedStopWords()
|
|
{
|
|
return anyBitSet(kFinishedStopWords);
|
|
}
|
|
|
|
__host__ __device__ void constexpr setFinishedMaxLength()
|
|
{
|
|
mState |= kFinishedMaxLength;
|
|
}
|
|
|
|
__host__ __device__ bool constexpr isFinishedMaxLength()
|
|
{
|
|
return anyBitSet(kFinishedMaxLength);
|
|
}
|
|
|
|
__host__ __device__ void constexpr setFinished()
|
|
{
|
|
mState |= kFinished;
|
|
}
|
|
|
|
__host__ __device__ bool constexpr isFinished() const
|
|
{
|
|
return anyBitSet(kFinished);
|
|
}
|
|
|
|
__host__ __device__ void constexpr setSkipDecoding()
|
|
{
|
|
mState = kSkipDecoding;
|
|
}
|
|
|
|
__host__ __device__ bool constexpr isSkipDecoding() const
|
|
{
|
|
return anyBitSet(kSkipDecoding);
|
|
}
|
|
|
|
using UnderlyingType = uint8_t;
|
|
|
|
private:
|
|
// The default state is interpreted as not finished.
|
|
__host__ __device__ constexpr FinishedState(UnderlyingType state)
|
|
: mState(state)
|
|
{
|
|
}
|
|
|
|
// Request has finished based on the generation of EOS token
|
|
static UnderlyingType constexpr kFinishedEos{1u << 0};
|
|
// Request has finished based on the generation of stop words
|
|
static UnderlyingType constexpr kFinishedStopWords{1u << 1};
|
|
// Request has finished based on reaching max sequence length
|
|
static UnderlyingType constexpr kFinishedMaxLength{1u << 2};
|
|
// Finished by any condition
|
|
static UnderlyingType constexpr kFinished{kFinishedEos | kFinishedStopWords | kFinishedMaxLength};
|
|
// Skip decoding. E.g. used for not accepted tokens in speculative decoding
|
|
static UnderlyingType constexpr kSkipDecoding{1u << 3};
|
|
|
|
__host__ __device__ bool constexpr anyBitSet(UnderlyingType bits) const
|
|
{
|
|
return (mState & bits) != 0;
|
|
}
|
|
|
|
UnderlyingType mState{};
|
|
};
|
|
|
|
static_assert(!FinishedState::empty().isFinished());
|
|
static_assert(!FinishedState::empty().isSkipDecoding());
|
|
static_assert(FinishedState::finished().isFinished());
|
|
static_assert(FinishedState::skipDecoding().isSkipDecoding());
|
|
static_assert(FinishedState::finishedEOS().isFinishedEOS());
|
|
static_assert(FinishedState::finishedStopWords().isFinishedStopWords());
|
|
static_assert(FinishedState::finishedMaxLength().isFinishedMaxLength());
|
|
|
|
//! \brief Initialize batchSize curand states with given seed.
|
|
//!
|
|
//! \param state output buffer [maxBatchSize]. Curand states to be initialized
|
|
//! \param batchSlots input buffer[batchSize], optional. Indices of rows of data in memory pool
|
|
//! \param batchSize number of states to initialize
|
|
//! \param randomSeed seed to initialize states
|
|
//! \param stream stream
|
|
void invokeCurandInitialize(
|
|
curandState_t* state, int const* batchSlots, const size_t batchSize, uint64_t randomSeed, cudaStream_t stream);
|
|
|
|
//! \brief Initialize batchSize curand states with given seed per request.
|
|
//!
|
|
//! \param state output buffer [maxBatchSize] of curand states to be initialized
|
|
//! \param batchSlots input buffer[batchSize], optional. Indices of rows of data in memory pool
|
|
//! \param batchSize number of states to initialize
|
|
//! \param randomSeeds input buffer [maxBatchSize] with seeds
|
|
//! \param stream stream
|
|
void invokeCurandBatchInitialize(curandState_t* states, int const* batchSlots, const size_t batchSize,
|
|
uint64_t const* randomSeeds, cudaStream_t stream);
|
|
|
|
//! \brief Applies mask, adds bias to logits and computes softmax values.
|
|
//! Sets -MAX_FLT value for tokens in range [vocabSize; vocabSizePadded) to prevent them from being chosen.
|
|
//! If request finished the generation, sets MAX_FLT to endId token and -MAX_FLT to all other tokens forcing to choose
|
|
//! endId token. Otherwise, adds bias per token if bias pointer is not nullptr.
|
|
//!
|
|
//! \param logits input/output buffer [maxBatchSize, vocabSize]. Logits to be modified by mask and bias.
|
|
//! If nullptr, logitsPtrs has to be provided.
|
|
//! \param logitsPtrs input/output buffer [maxBatchSize][vocabSize]. Vector of pointers to the logits.
|
|
//! If nullptr, logits has to be provided.
|
|
//! \param probs output buffer [maxBatchSize, vocabSize]. Probabilities of logits compute by softmax.
|
|
//! Can be the same pointer as logits
|
|
//! \param bias input buffer [vocabSize]. Bias to logit per token. Ignored if nullptr
|
|
//! \param endIds input buffer [maxBatchSize]. EOS token ids per request
|
|
//! \param finished input buffer [maxBatchSize] with flags set to true if request has finished the generation
|
|
//! \param batchSlots input buffer[batchSize], optional. Indices of rows of data in memory pool
|
|
//! \param batchSize current batch size
|
|
//! \param maxBatchSize max batch size
|
|
//! \param beamWidth beam width
|
|
//! \param vocabSize unpadded vocab size
|
|
//! \param vocabSizePadded padded vocab size
|
|
//! \param skipSoftMax flag to skip softmax computation
|
|
//! \param batchSlotsLogits flag to use batchSlot as index for logits and probs
|
|
//! \param stream stream
|
|
template <typename T>
|
|
void invokeAddBiasSoftMax(T* logits, T** logitsPtrs, T* probs, T const* bias, int32_t const* endIds,
|
|
FinishedState const* finished, int32_t const* batchSlots, int32_t batchSize, int32_t maxBatchSize,
|
|
int32_t beamWidth, int32_t vocabSize, int32_t vocabSizePadded, bool skipSoftMax, bool batchSlotsLogits,
|
|
cudaStream_t stream);
|
|
|
|
//! \brief Distributes values located in src to dst according to the indieces from batchSlots
|
|
//!
|
|
//! \param src input buffer [batchSize].
|
|
//! \param dst output buffer [maxBatchSize].
|
|
//! \param batchSlots input buffer [batchSize], optional. Indices of rows of data in memory pool
|
|
//! \param batchSize batch size
|
|
//! \param stream stream
|
|
template <typename T>
|
|
void invokeScatterDecodingParams(T const* src, T* dst, int const* batchSlots, int batchSize, cudaStream_t stream);
|
|
} // namespace kernels
|
|
} // namespace tensorrt_llm
|