TensorRT-LLMs/cpp/tensorrt_llm/layers/samplingLayer.cpp
Kaiyu Xie 4bb65f216f
Update TensorRT-LLM (#1274)
* Update TensorRT-LLM

---------

Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-12 18:15:52 +08:00

216 lines
8.0 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/layers/samplingLayer.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
#include <algorithm>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm
{
namespace layers
{
template <typename T>
void SamplingLayer<T>::allocateBuffer(size_t batchSize)
{
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
mSamplingWorkspaceSize = 0;
if (mDecodingMode.isTopK())
{
mSamplingWorkspaceSize = std::max(mSamplingWorkspaceSize, mTopKDecode->getWorkspaceSize());
}
if (mDecodingMode.isTopP())
{
mSamplingWorkspaceSize = std::max(mSamplingWorkspaceSize, mTopPDecode->getWorkspaceSize());
}
std::array<size_t, 4> deviceBufferSizes;
deviceBufferSizes[0] = sizeof(curandState_t) * batchSize;
deviceBufferSizes[1] = sizeof(uint64_t) * batchSize;
deviceBufferSizes[2] = sizeof(bool) * batchSize;
deviceBufferSizes[3] = mSamplingWorkspaceSize;
mCurandStatesDevice = mAllocator->reMalloc(mCurandStatesDevice, deviceBufferSizes[0], false);
mRandomSeedsDevice = mAllocator->reMalloc(mRandomSeedsDevice, deviceBufferSizes[1], false);
mSkipDecodeDevice = mAllocator->reMalloc(mSkipDecodeDevice, deviceBufferSizes[2], false);
mSamplingWorkspaceDevice = mAllocator->reMalloc(mSamplingWorkspaceDevice, deviceBufferSizes[3], false);
auto const bytesAllocated = std::accumulate(deviceBufferSizes.begin(), deviceBufferSizes.end(), 0);
TLLM_LOG_DEBUG("SamplingLayer allocated %d bytes on GPU", bytesAllocated);
mAllocatedSize = bytesAllocated;
if (mDecodingMode.isTopK())
{
mAllocatedSize += mTopKDecode->getAllocatedSize();
}
if (mDecodingMode.isTopP())
{
mAllocatedSize += mTopPDecode->getAllocatedSize();
}
// host buffers.
mSkipDecodeHost = (bool*) std::realloc(mSkipDecodeHost, sizeof(bool) * batchSize);
TLLM_CHECK(mSkipDecodeHost != nullptr);
}
template <typename T>
void SamplingLayer<T>::freeBuffer()
{
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
mAllocator->free((void**) (&mCurandStatesDevice));
mAllocator->free((void**) (&mRandomSeedsDevice));
mAllocator->free((void**) (&mSkipDecodeDevice));
mAllocator->free((void**) (&mSamplingWorkspaceDevice));
std::free(mSkipDecodeHost);
}
template <typename T>
SamplingLayer<T>::SamplingLayer(DecodingMode const& mode, size_t maxBatchSize, size_t vocabSize, size_t vocabSizePadded,
cudaStream_t stream, std::shared_ptr<IAllocator> allocator, cudaDeviceProp* prop)
: BaseSamplingLayer<T>(maxBatchSize, vocabSize, vocabSizePadded, stream, std::move(allocator), nullptr)
, mDecodingMode(mode)
{
TLLM_CHECK_WITH_INFO(!mDecodingMode.isBeamSearch(), "Beam search mode has been requested from Sampling Layer");
TLLM_CHECK_WITH_INFO(mDecodingMode.isTopKorTopP(), "Requested mode is neither TopK nor TopP");
if (mDecodingMode.isTopK())
{
mTopKDecode
= std::make_unique<TopKSamplingLayer<T>>(maxBatchSize, vocabSize, vocabSizePadded, mStream, mAllocator);
}
if (mDecodingMode.isTopP())
{
mTopPDecode = std::make_unique<TopPSamplingLayer<T>>(
maxBatchSize, vocabSize, vocabSizePadded, mStream, mAllocator, prop, /* deterministic */ true);
}
allocateBuffer(maxBatchSize);
}
template <typename T>
void SamplingLayer<T>::setup(const size_t batchSize, int32_t const* batchSlots, SetupParams const& setupParams)
{
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
// If runtime argument has single random seed, using this random seed to
// initialize the random table of all sentences. If the argument has
// [batchSize] random seeds, initializing the random table by different
// random seeds respectively. If no random seed, initialize the random table
// of all sentences by 0 directly.
if (setupParams.randomSeed)
{
if (setupParams.randomSeed->size() == 1)
{
invokeCurandInitialize(
mCurandStatesDevice, batchSlots, batchSize, setupParams.randomSeed->front(), mStream);
sync_check_cuda_error();
}
else
{
TLLM_CHECK_WITH_INFO(setupParams.randomSeed->size() == batchSize, "Random seed vector size mismatch.");
cudaAutoCpy(mRandomSeedsDevice, setupParams.randomSeed->data(), batchSize, mStream);
invokeCurandBatchInitialize(mCurandStatesDevice, batchSlots, batchSize, mRandomSeedsDevice, mStream);
sync_check_cuda_error();
}
}
else
{
// Initialize curand states using the default seed 0.
invokeCurandInitialize(mCurandStatesDevice, batchSlots, batchSize, 0, mStream);
}
if (mDecodingMode.isTopK())
{
mTopKDecode->setup(batchSize, batchSlots, setupParams);
}
if (mDecodingMode.isTopP())
{
mTopPDecode->setup(batchSize, batchSlots, setupParams);
}
}
template <typename T>
void SamplingLayer<T>::forward(DecodingOutputParams& outputs, ForwardParams& inputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const batchSize = inputs.logits.shape[0];
auto logits = inputs.logits.template getPtr<T>();
auto endIds = inputs.end_ids.template getPtr<int const>();
auto batchSlots = inputs.batch_slots ? inputs.batch_slots->template getPtr<int const>() : nullptr;
float* cumLogProbs = (outputs.cum_log_probs) ? outputs.cum_log_probs->template getPtr<float>() : nullptr;
float* outputLogProbs = (outputs.output_log_probs) ? outputs.output_log_probs->template getPtr<float>() : nullptr;
FinishedState* finishedInput = (inputs.finished)
? reinterpret_cast<FinishedState*>(inputs.finished->template getPtr<FinishedState::UnderlyingType>())
: nullptr;
std::vector<int32_t> batchSlotsVec(batchSize);
std::iota(batchSlotsVec.begin(), batchSlotsVec.end(), 0);
auto batchSlotsHost = inputs.batch_slots ? inputs.batch_slots->template getPtr<int const>() : batchSlotsVec.data();
bool skipTopK = !mDecodingMode.isTopK();
if (!skipTopK)
{
skipTopK = allOfBatchSlots(batchSlotsHost, mTopKDecode->getSkipDecodeHost(), batchSize, true);
}
bool skipTopP = !mDecodingMode.isTopP();
if (!skipTopP)
{
skipTopP = allOfBatchSlots(batchSlotsHost, mTopPDecode->getSkipDecodeHost(), batchSize, true);
}
// Compute probabilities either for TopP or if cumLogProbs or outputLogProbs are specified
bool const skipSoftMax = skipTopP && cumLogProbs == nullptr && outputLogProbs == nullptr;
inputs.curand_states = mCurandStatesDevice;
inputs.sampling_workspace = mSamplingWorkspaceDevice;
inputs.probs_computed = !skipSoftMax;
invokeAddBiasSoftMax(logits, (T**) nullptr, logits, (T*) (nullptr), endIds, finishedInput, batchSlots, batchSize,
mMaxBatchSize, /* bw */ 1, mVocabSize, mVocabSizePadded, skipSoftMax, /* batchSlotLogits */ false, mStream);
sync_check_cuda_error();
if (!skipTopK)
{
mTopKDecode->forward(outputs, inputs);
}
if (!skipTopP)
{
mTopPDecode->forward(outputs, inputs);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template class SamplingLayer<float>;
template class SamplingLayer<half>;
} // namespace layers
} // namespace tensorrt_llm