TensorRT-LLMs/cpp/tensorrt_llm/layers/topKSamplingLayer.h
Kaiyu Xie 4bb65f216f
Update TensorRT-LLM (#1274)
* Update TensorRT-LLM

---------

Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-12 18:15:52 +08:00

81 lines
2.5 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/common/tensor.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/layers/baseSamplingLayer.h"
namespace tensorrt_llm
{
namespace layers
{
//! \brief Layer to randomly sample tokens from TopK logits.
//! When both TopK and TopP are specified, layer jointly samples using TopK and TopP.
//! When no TopK param is specified, sampling is skipped for particular request.
template <typename T>
class TopKSamplingLayer : public BaseSamplingLayer<T>
{
public:
using Base = BaseSamplingLayer<T>;
using SetupParams = typename Base::SetupParams;
using ForwardParams = typename Base::ForwardParams;
TopKSamplingLayer(size_t maxBatchSize, size_t vocabSize, size_t vocabSizePadded, cudaStream_t stream,
std::shared_ptr<tensorrt_llm::common::IAllocator> allocator);
~TopKSamplingLayer();
void setup(size_t batchSize, int32_t const* batchSlots, SetupParams const& setupParams) override;
void forward(DecodingOutputParams& outputs, ForwardParams& inputs) override;
bool const* getSkipDecodeHost() const
{
return mSkipDecodeHost;
}
protected:
bool mNormalizeLogProbs = true;
uint32_t mRuntimeMaxTopK = 0;
uint32_t* mRuntimeTopKDevice = nullptr;
float* mRuntimeTopPDevice = nullptr;
void* mSetupWorkspaceDevice = nullptr;
bool* mSkipDecodeDevice = nullptr;
bool* mSkipDecodeHost = nullptr;
using Base::mMaxBatchSize;
using Base::mVocabSize;
using Base::mVocabSizePadded;
using Base::mSamplingWorkspaceSize;
using Base::mAllocatedSize;
using Base::mStream;
using Base::mAllocator;
static constexpr uint32_t TOP_K_MAX = 1024;
private:
void allocateBuffer(size_t batchSize);
void freeBuffer();
};
} // namespace layers
} // namespace tensorrt_llm