TensorRT-LLMs/examples/multimodal/build_visual_engine.py
Kaiyu Xie 4bb65f216f
Update TensorRT-LLM (#1274)
* Update TensorRT-LLM

---------

Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-12 18:15:52 +08:00

249 lines
9.3 KiB
Python

import argparse
import os
import shutil
import sys
from time import time
# isort: off
import torch
import tensorrt as trt
# isort: on
from PIL import Image
from transformers import (AutoProcessor, Blip2ForConditionalGeneration,
Blip2Processor, LlavaForConditionalGeneration,
NougatProcessor, VisionEncoderDecoderModel)
def export_visual_wrapper_onnx(visual_wrapper, image, output_dir):
logger.log(trt.Logger.INFO, "Exporting onnx")
os.makedirs(f'{output_dir}/onnx', exist_ok=True)
torch.onnx.export(visual_wrapper,
image,
f'{output_dir}/onnx/visual_encoder.onnx',
opset_version=17,
input_names=['input'],
output_names=['output'],
dynamic_axes={'input': {
0: 'batch'
}})
def build_trt_engine(img_height, img_width, output_dir, max_batch_size):
part_name = 'visual_encoder'
onnx_file = '%s/onnx/%s.onnx' % (output_dir, part_name)
engine_file = '%s/%s.engine' % (output_dir, part_name)
logger.log(trt.Logger.INFO, "Building TRT engine for %s" % part_name)
builder = trt.Builder(logger)
network = builder.create_network(
1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
config.set_flag(trt.BuilderFlag.FP16)
parser = trt.OnnxParser(network, logger)
with open(onnx_file, 'rb') as model:
if not parser.parse(model.read(), "/".join(onnx_file.split("/"))):
logger.log(trt.Logger.ERROR, "Failed parsing %s" % onnx_file)
for error in range(parser.num_errors):
logger.log(trt.Logger.ERROR, parser.get_error(error))
logger.log(trt.Logger.INFO, "Succeeded parsing %s" % onnx_file)
# Delete onnx files since we don't need them now
shutil.rmtree(f'{output_dir}/onnx')
nBS = -1
nMinBS = 1
nOptBS = max(nMinBS, int(max_batch_size / 2))
nMaxBS = max_batch_size
logger.log(trt.Logger.INFO,
f"Processed image dims {img_height}x{img_width}")
H, W = img_height, img_width
inputT = network.get_input(0)
inputT.shape = [nBS, 3, H, W]
profile.set_shape(inputT.name, [nMinBS, 3, H, W], [nOptBS, 3, H, W],
[nMaxBS, 3, H, W])
config.add_optimization_profile(profile)
t0 = time()
engine_string = builder.build_serialized_network(network, config)
t1 = time()
if engine_string is None:
raise RuntimeError("Failed building %s" % (engine_file))
else:
logger.log(trt.Logger.INFO,
"Succeeded building %s in %d s" % (engine_file, t1 - t0))
with open(engine_file, 'wb') as f:
f.write(engine_string)
def build_blip2_engine(args):
model_type = 'Salesforce/blip2-' + args.model_type
processor = Blip2Processor.from_pretrained(model_type)
raw_image = Image.new('RGB', [10, 10]) # dummy image
prompt = "Question: what is this? Answer:"
inputs = processor(raw_image, prompt,
return_tensors="pt").to(args.device, torch.float16)
image = inputs['pixel_values']
class Blip2VisionWrapper(torch.nn.Module):
def __init__(self, vision_model, qformer, projector, query_tokens):
super().__init__()
self.vision_model = vision_model
self.qformer = qformer
self.projector = projector
self.query_tokens = query_tokens
def forward(self, image):
features = self.vision_model(image)[0]
qformer_output = self.qformer(query_embeds=self.query_tokens,
encoder_hidden_states=features,
return_dict=True)
return self.projector(qformer_output.last_hidden_state)
model = Blip2ForConditionalGeneration.from_pretrained(
model_type, torch_dtype=torch.float16)
wrapper = Blip2VisionWrapper(model.vision_model, model.qformer,
model.language_projection, model.query_tokens)
wrapper.to(args.device)
export_visual_wrapper_onnx(wrapper, image, args.output_dir)
build_trt_engine(image.shape[2], image.shape[3], args.output_dir,
args.max_batch_size)
def build_llava_engine(args):
processor = AutoProcessor.from_pretrained(args.model_path)
raw_image = Image.new('RGB', [10, 10]) # dummy image
image = processor(text="dummy", images=raw_image,
return_tensors="pt")['pixel_values'].to(
args.device, torch.float16)
class LlavaVisionWrapper(torch.nn.Module):
def __init__(self, tower, projector, feature_layer):
super().__init__()
self.tower = tower
self.projector = projector
self.feature_layer = feature_layer
def forward(self, image):
all_hidden_states = self.tower(
image, output_hidden_states=True).hidden_states
features = all_hidden_states[self.feature_layer][:, 1:]
return self.projector(features)
model = LlavaForConditionalGeneration.from_pretrained(
args.model_path, torch_dtype=torch.float16)
wrapper = LlavaVisionWrapper(model.vision_tower.to(args.device),
model.multi_modal_projector.to(args.device),
model.config.vision_feature_layer)
export_visual_wrapper_onnx(wrapper, image, args.output_dir)
build_trt_engine(image.shape[2], image.shape[3], args.output_dir,
args.max_batch_size)
def build_vila_engine(args):
# Note: VILA model is not in public HF model zoo yet. We need to explicitly import from the git repo
sys.path.append(args.model_path + "/../VILA")
from llava.model import LlavaLlamaForCausalLM
processor = AutoProcessor.from_pretrained(args.model_path)
raw_image = Image.new('RGB', [10, 10]) # dummy image
image = processor(text="dummy", images=raw_image,
return_tensors="pt")['pixel_values'].to(
args.device, torch.float16)
class VilaVisionWrapper(torch.nn.Module):
def __init__(self, tower, projector):
super().__init__()
self.tower = tower
self.projector = projector
def forward(self, image):
features = self.tower(image)
return self.projector(features)
model = LlavaLlamaForCausalLM.from_pretrained(args.model_path,
torch_dtype=torch.float16)
wrapper = VilaVisionWrapper(
model.get_model().get_vision_tower().to(args.device),
model.get_model().mm_projector.to(args.device))
export_visual_wrapper_onnx(wrapper, image, args.output_dir)
build_trt_engine(image.shape[2], image.shape[3], args.output_dir,
args.max_batch_size)
def build_nougat_engine(args):
processor = NougatProcessor.from_pretrained(args.model_path)
raw_image = Image.new('RGB', [10, 10]) # dummy image
image = processor(raw_image, return_tensors="pt")['pixel_values'].to(
args.device, torch.float16)
class SwinEncoderWrapper(torch.nn.Module):
def __init__(self, encoder):
super().__init__()
self.encoder = encoder
def forward(self, image):
return self.encoder(image).last_hidden_state
model = VisionEncoderDecoderModel.from_pretrained(args.model_path,
torch_dtype=torch.float16)
swin_encoder = model.get_encoder().to(args.device)
wrapper = SwinEncoderWrapper(swin_encoder)
export_visual_wrapper_onnx(wrapper, image, args.output_dir)
build_trt_engine(image.shape[2], image.shape[3], args.output_dir,
args.max_batch_size)
if __name__ == '__main__':
logger = trt.Logger(trt.Logger.INFO)
parser = argparse.ArgumentParser()
parser.add_argument('--model_type',
type=str,
default=None,
help="Model type")
parser.add_argument('--model_path',
type=str,
default=None,
help="Huggingface repo or local directory with weights")
parser.add_argument('--output_dir',
type=str,
default=None,
help="Directory where visual TRT engines are saved")
parser.add_argument('--max_batch_size',
type=int,
default=4,
help="Maximum batch size for input images")
args = parser.parse_args()
args.device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
if args.output_dir is None:
args.output_dir = 'visual_engines/%s' % (args.model_path.split('/')[-1])
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.model_type in ['opt-2.7b', 'flan-t5-xl']:
build_blip2_engine(args)
elif args.model_type == 'llava':
build_llava_engine(args)
elif args.model_type == 'vila':
build_vila_engine(args)
elif args.model_type == 'nougat':
build_nougat_engine(args)
else:
raise RuntimeError(f"Invalid model type {args.model_type}")