TensorRT-LLMs/tensorrt_llm/auto_parallel/shape_info.py
Kaiyu Xie 4bb65f216f
Update TensorRT-LLM (#1274)
* Update TensorRT-LLM

---------

Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-12 18:15:52 +08:00

338 lines
12 KiB
Python

from dataclasses import dataclass
from enum import Enum
from typing import Dict, List, Set
import numpy as np
import tensorrt as trt
import torch
from tensorrt_llm._utils import trt_dtype_to_np, trt_dtype_to_str
from tensorrt_llm.logger import logger
from .pipeline_graph import PipelineGraph
from .utils import (get_builder_flags, get_cache_key, get_sorted_layer_ids,
set_trt_network, to_base_class_layer, to_subclass_layer,
to_trt_weights)
class ShapeType(Enum):
MIN = 0
OPT = 1
MAX = 2
def get_shape_layers(trt_network):
shape_layers = set()
for i in range(trt_network.num_layers):
layer = trt_network.get_layer(i)
if (layer.num_inputs > 0 and np.all([
layer.get_input(j).is_shape_tensor
for j in range(layer.num_inputs)
if layer.get_input(j) is not None
])) or (layer.num_outputs > 0 and np.all([
layer.get_output(j).is_shape_tensor
for j in range(layer.num_outputs)
])):
shape_layers.add(layer.name)
return shape_layers
def get_layers_in_shape_network(trt_network, shape_layers, sorted_layer_ids):
layers = set()
shape_tensors = set()
for layer_id in reversed(sorted_layer_ids):
layer = trt_network.get_layer(layer_id)
in_shape_network = False
if layer.name in shape_layers:
in_shape_network = True
else:
for j in range(layer.num_outputs):
output = layer.get_output(j)
if output.name in shape_tensors:
in_shape_network = True
break
if in_shape_network:
layers.add(layer.name)
for j in range(layer.num_inputs):
input = layer.get_input(j)
if input is not None:
shape_tensors.add(input.name)
return layers
def get_shape_network(trt_network,
shapes,
values,
sorted_layer_ids,
profile=None,
shape_type: ShapeType = ShapeType.OPT):
shape_layers = get_shape_layers(trt_network)
layers_in_shape_network = get_layers_in_shape_network(
trt_network, shape_layers, sorted_layer_ids)
shape_graph = PipelineGraph.create_graph()
shape_network = shape_graph.as_trt()
shape_builder = shape_network.builder
shape_profile = shape_builder.create_optimization_profile()
for i in range(trt_network.num_inputs):
input = trt_network.get_input(i)
shapes[input.name] = input.shape
new_input = shape_graph.add_input(input)
if profile is not None:
if -1 in input.shape:
shape = profile.get_shape(input.name)
shape = shape[shape_type.value]
shapes[input.name] = shape
new_input.raw_shape = shape
if input.is_shape_tensor:
shape_values = profile.get_shape_input(input.name)
value = shape_values[shape_type.value]
values[input.name] = value
shape_profile.set_shape_input(input.name, value, value, value)
output_mapping = {}
for layer_id in sorted_layer_ids:
layer = trt_network.get_layer(layer_id)
if layer.name in shape_layers:
new_layer = shape_graph.add_layer(layer)
for i in range(layer.num_outputs):
output = layer.get_output(i)
if output.dtype != trt.DataType.BOOL:
shape_graph.add_output_shape(output)
else:
proxy_layer = shape_network.add_identity(
new_layer.as_trt().get_output(i))
proxy_output = proxy_layer.get_output(0)
proxy_output.dtype = trt.DataType.INT32
shape_graph.register_layer(proxy_layer)
shape_graph.add_output_shape(proxy_output)
output_mapping[proxy_output.name] = output.name
elif layer.name in layers_in_shape_network:
if layer.type == trt.LayerType.CONSTANT:
shape_graph.add_input(layer.get_output(0))
else:
shape_graph.add_layer(layer)
return shape_network, shape_profile, shape_layers, output_mapping
def get_per_layer_graph(
layer,
shapes,
values,
updated_attrs=None,
is_shape_io: bool = None,
):
graph = PipelineGraph.create_graph()
network = graph.as_trt()
is_shape_layer = layer.num_inputs != 0
for i in range(layer.num_inputs):
input = layer.get_input(i)
if input is not None:
shape = shapes[input.name]
if (values.get(input.name) is not None
and not isinstance(values[input.name], torch.Tensor)):
value = values[input.name]
weights = np.asarray(value, dtype=trt_dtype_to_np(input.dtype))
weights = to_trt_weights(weights)
input_layer = network.add_constant(shape, weights)
new_input = input_layer.get_output(0)
new_input.name = input.name
graph.register_layer(input_layer)
elif graph.get_input(input.name) is None:
new_input = graph.add_input(input)
new_input.raw_shape = shapes[input.name]
is_shape_layer = False
new_layer = graph.add_layer(
layer,
updated_attrs=updated_attrs,
)
output_mapping = {}
if layer.type == trt.LayerType.SHAPE:
is_shape_layer = True
if layer.num_inputs == 0:
is_shape_layer = False
if is_shape_io is not None:
is_shape_layer = is_shape_io
for i in range(layer.num_outputs):
output = layer.get_output(i)
value = values.get(output.name)
if value is not None and isinstance(value, torch.Tensor):
is_output_shape = False
elif is_shape_layer:
is_output_shape = True
else:
is_output_shape = False
if is_output_shape:
if output.dtype == trt.DataType.BOOL:
proxy_layer = network.add_cast(
new_layer.as_trt().get_output(i),
trt.DataType.INT32,
)
proxy_output = proxy_layer.get_output(0)
graph.register_layer(proxy_layer)
output_mapping[proxy_output.name] = output.name
output = proxy_output
graph.add_output_shape(output)
else:
graph.add_output(output)
return graph, output_mapping
def infer_shapes(network, shapes, values, profile=None):
if network.num_outputs == 0:
return
builder = network.builder
config = builder.create_builder_config()
config.builder_optimization_level = 0
config.flags = get_builder_flags()
profile = profile or builder.create_optimization_profile()
config.add_optimization_profile(profile)
plan = builder.build_serialized_network(network, config)
if plan is None:
raise RuntimeError(
'Engine building failed when inferring shapes, please check the error log.'
)
runtime = trt.Runtime(logger.trt_logger)
engine = runtime.deserialize_cuda_engine(plan)
context = engine.create_execution_context()
for i in range(network.num_inputs):
input = network.get_input(i)
if input.is_shape_tensor:
value = values[input.name]
context.set_shape_input(engine[input.name], value)
context.infer_shapes()
assert context.all_binding_shapes_specified
for i in range(network.num_outputs):
output = network.get_output(i)
shape = context.get_tensor_shape(output.name)
# if len(shape) == 0:
# shape = trt.Dims([1])
shapes[output.name] = shape
if output.is_shape_tensor:
if shape == [0]:
values[output.name] = []
else:
values[output.name] = context.get_shape(engine[output.name])
@dataclass
class ShapeInfo:
shapes: Dict[str, trt.Dims]
values: Dict[str, List[int]]
shape_layers: Set[str]
max_shapes: Dict[str, trt.Dims] = None
def set_constant_value(layer, values):
to_subclass_layer(layer)
output_name = layer.get_output(0).name
weights = layer.weights
if isinstance(weights, trt.Weights):
weights = weights.numpy()
values[output_name] = list(weights)
to_base_class_layer(layer)
def infer_per_layer_shapes(
layer: trt.ILayer,
shapes,
values,
cache=None,
is_shape_io=False,
):
if layer.type == trt.LayerType.CONSTANT:
to_subclass_layer(layer)
output_name = layer.get_output(0).name
shape = layer.shape
shapes[output_name] = shape
if is_shape_io:
set_constant_value(layer, values)
to_base_class_layer(layer)
return
elif layer.type == trt.LayerType.SHAPE:
input_name = layer.get_input(0).name
output_name = layer.get_output(0).name
shape = [*shapes[input_name]]
shapes[output_name] = trt.Dims([len(shape)])
values[output_name] = shape
return
if cache is not None:
cache_key = get_cache_key(layer, shapes, values)
if cache_key in cache:
output_shapes, output_values = cache[cache_key]
for i in range(layer.num_outputs):
output = layer.get_output(i)
shapes[output.name] = output_shapes[i]
if output_values[i] is not None:
values[output.name] = output_values[i]
return
logger.debug(f"infer shapes for layer {layer.name}")
graph, output_mapping = get_per_layer_graph(layer, shapes, values)
try:
infer_shapes(graph.as_trt(), shapes, values)
except RuntimeError as e:
dtypes = [
trt_dtype_to_str(layer.get_input(i).dtype)
for i in range(layer.num_inputs)
]
layer_info = (f"type={cache_key[0]}, "
f"attrs={dict(cache_key[1])}, "
f"dtypes={dtypes}, "
f"shapes={list(cache_key[2])}, "
f"values={list(cache_key[3])}")
raise RuntimeError(
f"infer shapes failed for layer {layer.name} ({layer_info})") from e
for proxy_output, output in output_mapping.items():
shapes[output] = shapes[proxy_output]
del shapes[proxy_output]
if proxy_output in values:
values[output] = [*map(bool, values[proxy_output])]
del values[proxy_output]
if cache is not None:
logger.debug(
f"shape inference cache miss, layer: {layer.name}, cache key: {cache_key}"
)
output_shapes = []
output_values = []
for i in range(layer.num_outputs):
output = layer.get_output(i)
output_shapes.append(shapes[output.name])
output_values.append(values.get(output.name))
cache[cache_key] = (output_shapes, output_values)
def get_shape_info(trt_network, profile, shape_type: ShapeType = ShapeType.OPT):
shapes = {}
values = {}
sorted_layer_ids = get_sorted_layer_ids(trt_network)
infer_shape_layers = False
shape_network, shape_profile, shape_layers, output_mapping = get_shape_network(
trt_network,
shapes,
values,
sorted_layer_ids,
profile=profile,
shape_type=shape_type)
try:
infer_shapes(shape_network, shapes, values, shape_profile)
for proxy_output, output in output_mapping.items():
shapes[output] = shapes[proxy_output]
values[output] = [*map(bool, values[proxy_output])]
del shapes[proxy_output]
del values[proxy_output]
except RuntimeError:
infer_shape_layers = True
cache = {}
for layer_id in sorted_layer_ids:
layer = trt_network.get_layer(layer_id)
is_shape_io = layer.name in shape_layers
if is_shape_io and not infer_shape_layers:
continue
set_trt_network(layer, trt_network)
infer_per_layer_shapes(layer,
shapes,
values,
cache,
is_shape_io=is_shape_io)
return ShapeInfo(shapes, values, shape_layers)